525
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impartial competitive learning in multi-layered neural networks

Article: 2174079 | Received 01 Nov 2022, Accepted 24 Jan 2023, Published online: 22 Feb 2023

References

  • Arbabzadah, F., Montavon, G., Müller, K. R., & Samek, W. (2016). Identifying individual facial expressions by deconstructing a neural network. In German Conference on Pattern Recognition (pp. 344–354).
  • Arpit, D., Jastrz Kebski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., Maharaj, T., Fischerl, A., Courville, A., Bengio, Y., & Lacoste-Julien, S. (2017). A closer look at memorization in deep networks. In International Conference on Machine Learning (pp. 233–242).
  • Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K. R., & Samek, W. (2015). On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS One, 10(7), e0130140. https://doi.org/10.1371/journal.pone.0130140
  • Bai, Y., Wang, H., Tao, Z., Li, K., & Fu, Y. (2022). Dual lottery ticket hypothesis. arXiv preprint, arXiv:2203.04248.
  • Banerjee, A., & Ghosh, J. (2004). Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres. Neural Networks, IEEE Transactions on, 15(3), 702–719. https://doi.org/10.1109/TNN.2004.824416
  • Bao, G., Lin, M., Sang, X., Hou, Y., Liu, Y., & Wu, Y. (2022). Classification of dysphonic voices in Parkinson's disease with semi-Supervised competitive learning algorithm. Biosensors, 12(7), 502. https://doi.org/10.3390/bios12070502
  • Binder, A., Montavon, G., Lapuschkin, S., Müller, K. R., & Samek, W. (2016). Layer-wise relevance propagation for neural networks with local renormalization layers. In International Conference on Artificial Neural Networks (pp. 63–71).
  • Bogdan, M., & Rosenstiel, W. (2001). Detection of cluster in self-organizing maps for controlling a prostheses using nerve signals. In 9th European Symposium on Artificial Neural Networks. ESANN. Proceedings. D-facto, Evere, Belgium (pp. 131–136).
  • Brugger, D., Bogdan, M., & Rosenstiel, W. (2008). Automatic cluster detection in kohonen's SOM. Neural Networks, IEEE Transactions on, 19(3), 442–459. https://doi.org/10.1109/TNN.2007.909556
  • Bucilu, C., Caruana, R., & Niculescu-Mizil, A. (2006). Model compression. In Proceedings of the 12th Acm Sigkdd International Conference on Knowledge Discovery and Data Mining (pp. 535–541).
  • Chen, X., Cheng, Y., Wang, S., Gan, Z., Liu, J., & Wang, Z. (2021). The elastic lottery ticket hypothesis. Advances in Neural Information Processing Systems, 34, 26609–26621.
  • Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In Proceedings of the 30th International Conference on Neural Information Processing Systems (pp. 2180–2188).
  • Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2020). A survey of model compression and acceleration for deep neural networks.
  • Choy, C. S., & Siu, W. (1998). A class of competitive learning models which avoids neuron underutilization problem. IEEE Transactions on Neural Networks, 9(6), 1258–1269. https://doi.org/10.1109/72.728374
  • Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. John Wiley and Sons, Inc.
  • da Cunha, A., Natale, E., & Viennot, L. (2022). Proving the strong lottery ticket hypothesis for convolutional neural networks. In International Conference on Learning Representations.
  • DeSieno, D. (1988). Adding a conscience to competitive learning. In IEEE International Conference on Neural Networks (Vol. 1, pp. 117–124).
  • Eckman, F. R., Bell, L., & Nelson, D. (1988). On the generalization of relative clause instruction in the acquisition of English as a second language. Applied Linguistics, 9(1), 1–20. https://doi.org/10.1093/applin/9.1.1
  • Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing higher-layer features of a deep network. University of Montreal. 1341.
  • Fernández Rodríguez, J. D., Maza Quiroga, R. M., Palomo Ferrer, E. J., J. M. Ortiz-de-lazcano Lobato, & López-Rubio, E. (2022). A novel continual learning approach for competitive neural networks.
  • Frankle, J., & Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint arXiv:1803.03635.
  • Frankle, J., Dziugaite, G. K., Roy, D., & Carbin, M. (2020). Linear mode connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning (pp. 3259–3269).
  • Frankle, J., Dziugaite, G. K., Roy, D. M., & Carbin, M. (2019). Stabilizing the lottery ticket hypothesis. arXiv preprint arXiv:1903.01611.
  • Fritzke, B. (1993). Vector quantization with a growing and splitting elastic net. In Icann'93: International Conference on Artificial Neural Networks (pp. 580–585). Springer.
  • Fritzke, B. (1996). Automatic construction of radial basis function networks with the growing neural gas model and its relevance for fuzzy logic. In Applied computing: Proceedings of the Acm Symposium on Applied Computing (pp. 624–627). ACM.
  • Fukushima, K. (1975). Cognitron: A self-organizing multi-layered neural network. Biological Cybernetics, 20(3-4), 121–136. https://doi.org/10.1007/BF00342633
  • Grossberg, S. (1976). Adaptive pattern classification and universal recoding: I parallel development and coding of neural feature detectors. Biological Cybernetics, 23(3), 121–134. https://doi.org/10.1007/BF00344744
  • Gunasekar, S., Woodworth, B. E., Bhojanapalli, S., Neyshabur, B., & Srebro, N. (2017). Implicit regularization in matrix factorization. Advances in Neural Information Processing Systems, 30, 6152–6160.
  • Himberg, J. (2000). A SOM based cluster visualization and its application for false colouring. In Proceedings of the International Joint Conference on Neural Networks (pp. 69–74).
  • Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint, arXiv:1503.02531.
  • Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., & Madry, A. (2019). Adversarial examples are not bugs, they are features. arXiv preprint, arXiv:1905.02175.
  • Ishikawa, S. (2013). The ICNALE and sophisticated contrastive interlanguage analysis of Asian learners of English. Learner Corpus Studies in Asia and the World, 1(1), 91–118.
  • Izumi, S. (2003). Processing difficulty in comprehension and production of relative clauses by learners of English as a second language. Language Learning, 53(2), 285–323. https://doi.org/10.1111/1467-9922.00218
  • Kamimura, R. (2019). Neural self-compressor: Collective interpretation by compressing multi-layered neural networks into non-layered networks. Neurocomputing, 323(5), 12–36. https://doi.org/10.1016/j.neucom.2018.09.036.
  • Kohonen, T. (1990). The self-organizing maps. Proceedings of the IEEE, 78(9), 1464–1480. https://doi.org/10.1109/5.58325
  • Krotov, D., & Hopfield, J. J. (2019). Unsupervised learning by competing hidden units. Proceedings of the National Academy of Sciences, 116(16), 7723–7731. https://doi.org/10.1073/pnas.1820458116
  • Lagani, G., Falchi, F., Gennaro, C., & Amato, G. (2021). Training convolutional neural networks with competitive Hebbian learning approaches. In International Conference on Machine Learning, Optimization, and Data Science (pp. 25–40).
  • Lapuschkin, S., Binder, A., Montavon, G., Muller, K. R., & Samek, W. (2016). Analyzing classifiers: Fisher vectors and deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2912–2920).
  • Li, P., Tu, S., & Xu, L. (2022). Deep rival penalized competitive learning for low-resolution face recognition. Neural Networks.
  • Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21(3), 105–117. https://doi.org/10.1109/2.36
  • Linsker, R. (1989). How to generate ordered maps by maximizing the mutual information between input and output signals. Neural Computation, 1(3), 402–411. https://doi.org/10.1162/neco.1989.1.3.402
  • Linsker, R. (1992). Local synaptic learning rules suffice to maximize mutual information in a linear network. Neural Computation, 4(5), 691–702. https://doi.org/10.1162/neco.1992.4.5.691
  • Lu, Y., Cheung, Y. M., & Tang, Y. Y. (2019). Self-adaptive multiprototype-based competitive learning approach: A k-means-type algorithm for imbalanced data clustering. IEEE Transactions on Cybernetics, 51(3), 1598–1612. https://doi.org/10.1109/TCYB.6221036
  • Luo, P., Zhu, Z., Liu, Z., Wang, X., & Tang, X. (2016). Face model compression by distilling knowledge from neurons. In Thirtieth aaai Conference on Artificial Intelligence.
  • Mahendran, A., & Vedaldi, A. (2015). Understanding deep image representations by inverting them. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5188–5196).
  • Makhzani, A., & Frey, B. (2014). A winner-take-all method for training sparse convolutional autoencoders. In Nips Deep Learning Workshop.
  • Malach, E., Yehudai, G., Shalev-Schwartz, S., & Shamir, O. (2020). Proving the lottery ticket hypothesis: Pruning is all you need. In International Conference on Machine Learning (pp. 6682–6691).
  • Mandt, S., Hoffman, M. D., & Blei, D. M. (2017). Stochastic gradient descent as approximate bayesian inference. arXiv preprint, arXiv:1704.04289.
  • McClelland, J. L, & Rumelhart, D. E. (1986). Parallel distributed processing. Vol. 1, MIT Press.
  • Montavon, G., Binder, A., Lapuschkin, S., Samek, W., & Müller, K. R. (2019). Layer-wise relevance propagation: An overview. In Explainable AI: Interpreting, explaining and visualizing deep learning (pp. 193–209). Springer.
  • Nguyen, A., Yosinski, J., & Clune, J. (2019). Understanding neural networks via feature visualization: A survey. In Explainable AI: Interpreting, explaining and visualizing deep learning (pp. 55–76). Springer.
  • O'Grady, W., Lee, M., & Choo, M. (2003). A subject-object asymmetry in the acquisition of relative clauses in Korean as a second language. Studies in Second Language Acquisition, 25(3), 433–448. https://doi.org/10.1017/S0272263103000172
  • Papadopoulou, D., & Clahsen, H. (2003). Parsing strategies in L1 and L2 sentence processing: A study of relative clause attachment in Greek. Studies in Second Language Acquisition, 25(4), 501–528. https://doi.org/10.1017/S0272263103000214
  • Peng, B., Jin, L., & Shang, M. (2021). Multi-robot competitive tracking based on k-WTA neural network with one single neuron. Neurocomputing, 460(4), 1–8. https://doi.org/10.1016/j.neucom.2021.07.020.
  • Rumelhart, D. E., & McClelland, J. L. (1986). On learning the past tenses of English verbs. In D. E. Rumelhart, G. E. Hinton, & R. J. Williams, (Eds.), Parallel distributed processing (Vol. 2, pp. 216–271). MIT Press.
  • Rumelhart, D. E., & Zipser, D. (1985). Feature discovery by competitive learning. Cognitive Science, 9(1), 75–112. https://doi.org/10.1207/s15516709cog0901_5.
  • Shinozaki, T. (2017). Biologically inspired feedforward supervised learning for deep self-organizing map networks. arXiv preprint, arXiv:1710.09574.
  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929–1958.
  • Srivastava, R. K., Masci, J., Kazerounian, S., Gomez, F., & Schmidhuber, J. (2013). Compete to compute. Advances in Neural Information Processing Systems, 26, 2312–2321.
  • Sturm, I., Lapuschkin, S., Samek, W., & Müller, K. R. (2016). Interpretable deep neural networks for single-trial EEG classification. Journal of Neuroscience Methods, 274(1), 141–145. https://doi.org/10.1016/j.jneumeth.2016.10.008.
  • Tian, Y., Jiang, T., Gong, Q., & Morcos, A. (2019). Luck matters: Understanding training dynamics of deep relu networks. arXiv preprint, arXiv:1905.13405.
  • Van Hulle, M. M. (1999). Faithful representations with topographic maps. Neural Networks, 12(6), 803–823. https://doi.org/10.1016/S0893-6080(99)00041-6
  • Van Hulle, M. M. (2004). Entropy-based kernel modeling for topographic map formation. IEEE Transactions on Neural Networks, 15(4), 850–858. https://doi.org/10.1109/TNN.2004.828763
  • Wakamatsu, H. (2018). Corpus analysis (in Japanese). In A. Hirai (Ed.), Data analysis for educational psycholinguistics. Tokyo Tosho.
  • Wang, L., Yan, Y., He, K., Wu, Y., & Xu, W. (2021). Dynamically disentangling social bias from task-oriented representations with adversarial attack. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 3740–3750).
  • Wang, T., Zhao, J., Yatskar, M., Chang, K. W., & Ordonez, V. (2019). Balanced datasets are not enough: Estimating and mitigating gender bias in deep image representations. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 5310–5319).
  • Wu, L., Li, J., Wang, Y., Meng, Q., Qin, T., Chen, W., Zhang, M., & Liu, T. Y. (2021). R-drop: Regularized dropout for neural networks. Advances in Neural Information Processing Systems, 34, 10890–10905.
  • Xia, Y., Zhou, J., Shi, Z., Lu, C., & Huang, H. (2020). Generative adversarial regularized mutual information policy gradient framework for automatic diagnosis. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, pp. 1062–1069).
  • Xiao, T., Li, H., Ouyang, W., & Wang, X. (2016). Learning deep feature representations with domain guided dropout for person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1249–1258).
  • Xie, Q., Dai, Z., Du, Y., Hovy, E., & Neubig, G. (2017). Controllable invariance through adversarial feature learning. arXiv preprint, arXiv:1705.11122.
  • Xu, L., Xu, Y., & Chow, T. W. (2010). PolSOM: A new method for multidimensional data visualization. Pattern Recognition, 43(4), 1668–1675. https://doi.org/10.1016/j.patcog.2009.09.025
  • Yin, H. (2002). ViSOM-a novel method for multivariate data projection and structure visualization. Neural Networks, IEEE Transactions on, 13(1), 237–243. https://doi.org/10.1109/72.977314
  • Yu, Z., Guo, S., Deng, F., Yan, Q., Huang, K., Liu, J. K., & Chen, F. (2018). Emergent inference of hidden markov models in spiking neural networks through winner-take-all. IEEE Transactions on Cybernetics, 50(3), 1347–1354. https://doi.org/10.1109/TCYB.6221036
  • Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3), 107–115. https://doi.org/10.1145/3446776