691
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microservice combination optimisation based on improved gray wolf algorithm

, , , , &
Article: 2175791 | Received 21 Oct 2022, Accepted 28 Jan 2023, Published online: 22 Feb 2023

References

  • Ai, S., Hong, S., Zheng, X., Wang, Y., & Liu, X. (2021). CSRT rumor spreading model based on complex network. International Journal of Intelligent Systems, 36(5), 1903–1913. https://doi.org/10.1002/int.22365
  • Attaoui, W., Sabir, E., Elbiaze, H., & Guizani, M. (2022). VNF and Container Placement: Recent Advances and Future Trends. Computer Science, arXiv preprint arXiv:2204.00178. https://doi.org/10.48550/arXiv.2204.00178
  • Barkat, A., Kazar, O., & Seddiki, I. (2021). Framework for web service composition based on QoS in the multi cloud environment. International Journal of Information Technology, 13(2), 459–467. https://doi.org/10.1007/s41870-020-00564-z
  • Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences, 237, 82–117. https://doi.org/10.1016/j.ins.2013.02.041
  • Brady, K., Moon, S., Nguyen, T., & Coffman, J. (2020, January 6–8). Docker container security in cloud computing. In 10th Annual Computing and Communication Workshop and Conference, CCWC 2020, Las Vegas, NV, USA, 0975–0980. https://doi.org/10.1109/CCWC47524.2020.9031195
  • Brasser, F., Jauernig, P., Pustelnik, F., Sadeghi, A. R., & Stapf, E. (2022). Trusted Container Extensions for Container-based Confidential Computing. Cryptography and Security, arXiv:2205.05747v1. https://doi.org/10.48550/arXiv.2205.05747
  • Cerny, T., Donahoo, M. J., & Trnka, M. (2018). Contextual understanding of microservice architecture. ACM SIGAPP Applied Computing Review, 17(4), 29–45. https://doi.org/10.1145/3183628.3183631
  • Chen, C., & Huang, T. (2021). Camdar-adv: Generating adversarial patches on 3D object. International Journal of Intelligent Systems, 36(3), 1441–1453. https://doi.org/10.1002/int.22349
  • Han, T., Zhang, L., & Jia, S. (2022). Bin similarity-based domain adaptation for fine-grained image classification. International Journal of Intelligent Systems, 37(3), 2319–2334. https://doi.org/10.1002/int.22775
  • Hu, L., Yan, H., Li, L., Pan, Z., Liu, X., & Zhang, Z. (2021). MHAT: An efficient model-heterogenous aggregation training scheme for federated learning. Information Sciences, 560, 493–503. https://doi.org/10.1016/j.ins.2021.01.046
  • Huang, T., Chen, Y., Yao, B., Yang, B., Wang, X., & Li, Y. (2020). Adversarial attacks on deep-learning-based radar range profile target recognition. Information Sciences, 531, 159–176. https://doi.org/10.1016/j.ins.2020.03.066
  • Huang, T., Zhang, Q., Liu, J., Hou, R., Wang, X., & Li, Y. (2020). Adversarial attacks on deep-learning-based SAR image target recognition. Journal of Network and Computer Applications, 162, 102632. https://doi.org/10.1016/j.jnca.2020.102632
  • Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: Past, present, and future. Multimedia Tools and Applications, 80(5), 8091–8126. https://doi.org/10.1007/s11042-020-10139-6
  • Kuang, X., Zhang, M., Li, H., Zhao, G., Cao, H., Wu, Z., & Wang, X. (2019, December). DeepWAF: Detecting web attacks based on CNN and LSTM models. In J. Vaidya, X. Zhang, & J. Li (Eds.), Cyberspace safety and security (pp. 121–136). Springer. https://doi.org/10.1007/978-3-030-37352-8_11.
  • Li, C., Tang, Y., Tang, Z., Cao, J., & Zhang, Y. (2022). Motif-based embedding label propagation algorithm for community detection. International Journal of Intelligent Systems, 37(3), 1880–1902. https://doi.org/10.1002/int.22759
  • Li, Y., Yao, S., Zhang, R., & Yang, C. (2021). Analyzing host security using D-S evidence theory and multisource information fusion. International Journal of Intelligent Systems, 36(2), 1053–1068. https://doi.org/10.1002/int.22330
  • Liang, C., Wang, X., Zhang, X., Zhang, Y., Sharif, K., & Tan, Y. A. (2018). A payload-dependent packet rearranging covert channel for mobile VoIP traffic. Information Sciences, 465, 162–173. https://doi.org/10.1016/j.ins.2018.07.011
  • Mendonça, N. C., Jamshidi, P., Garlan, D., & Pahl, C. (2019). Developing self-adaptive microservice systems: Challenges and directions. IEEE Software, 38(2), 70–79. https://doi.org/10.1109/MS.2019.2955937
  • Meng, A. B., Chen, Y. C., Yin, H., & Chen, S. Z. (2014). Crisscross optimization algorithm and its application. Knowledge-Based Systems, 67, 218–229. https://doi.org/10.1016/j.knosys.2014.05.004
  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
  • Mo, K., Huang, T., & Xiang, X. (2020, October). Querying little is enough: Model inversion attack via latent information. In X. Chen, H. Yan, Q. Yan, & X. Zhang (Eds.), Machine learning for cyber security (pp. 681–690). Springer. https://doi.org/10.1002/int.22315.
  • Mo, K., Tang, W., Li, J., & Yuan, X. (2022). Attacking deep reinforcement learning with decoupled adversarial policy. IEEE Transactions on Dependable and Secure Computing, https://doi.org/10.1109/TDSC.2022.3143566
  • Naseri, A., & Jafari Navimipour, N. (2019). A new agent-based method for QoS-aware cloud service composition using particle swarm optimization algorithm. Journal of Ambient Intelligence and Humanized Computing, 10(5), 1851–1864. https://doi.org/10.1007/s12652-018-0773-8
  • Potdar, A. M., Narayan, D. G., Kengond, S., & Mulla, M. M. (2020). Performance evaluation of docker container and virtual machine. Procedia Computer Science, 171, 1419–1428. https://doi.org/10.1016/j.procs.2020.04.152
  • Ren, H., Huang, T., & Yan, H. (2021). Adversarial examples: Attacks and defenses in the physical world. International Journal of Machine Learning and Cybernetics, 12(11), 3325–3336. https://doi.org/10.1007/s13042-020-01242-z
  • Sefati, S., & Navimipour, N. J. (2021). A qos-aware service composition mechanism in the internet of things using a hidden-markov-model-based optimization algorithm. IEEE Internet of Things Journal, 8(20), 15620–15627. https://doi.org/10.1109/JIOT.2021.3074499
  • Sengupta, S., Basak, S., & Peters, R. A. (2018). Particle swarm optimization: A survey of historical and recent developments with hybridization perspectives. Machine Learning and Knowledge Extraction, 1(1), 157–191. https://doi.org/10.3390/make1010010
  • Wang, X., Li, J., Kuang, X., Tan, Y. A., & Li, J. (2019). The security of machine learning in an adversarial setting: A survey. Journal of Parallel and Distributed Computing, 130, 12–23. https://doi.org/10.1016/j.jpdc.2019.03.003
  • Wang, Y., Yang, G., Li, T., Zhang, L., Wang, Y., Ke, L., Dou, Y., Li, S., & Yu, X. (2020). Optimal mixed block withholding attacks based on reinforcement learning. International Journal of Intelligent Systems, 35(12), 2032–2048. https://doi.org/10.1002/int.22282
  • Wu, C., & Li, W. (2021). Enhancing intrusion detection with feature selection and neural network. International Journal of Intelligent Systems, 36(7), 3087–3105. https://doi.org/10.1002/int.22397
  • Xiaofeng, Z., & Xiuying, W. (2019). Comprehensive review of grey wolf optimization algorithm. Computer Science, 46(03), 30–38. https://doi.org/10.11896/j.issn.1002-137X.2019.03.004
  • Yan, H., Chen, M., Hu, L., & Jia, C. (2020). Secure video retrieval using image query on an untrusted cloud. Applied Soft Computing, 97, 106782. https://doi.org/10.1016/j.asoc.2020.106782
  • Yan, H., Hu, L., Xiang, X., Liu, Z., & Yuan, X. (2021). PPCL: Privacy-preserving collaborative learning for mitigating indirect information leakage. Information Sciences, 548, 423–437. https://doi.org/10.1016/j.ins.2020.09.064
  • Yang, Y., Yang, B., Wang, S., Jin, T., & Li, S. (2020). An enhanced multi-objective grey wolf optimizer for service composition in cloud manufacturing. Applied Soft Computing, 87, 106003. https://doi.org/10.1016/j.asoc.2019.106003
  • Yang, Y., Yang, B., Wang, S., Liu, W., & Jin, T. (2019). An improved grey wolf optimizer algorithm for energy-aware service composition in cloud manufacturing. The International Journal of Advanced Manufacturing Technology, 105(7), 3079–3091. https://doi.org/10.1007/s00170-019-04449-9
  • Yu, X., Wang, Z., Wang, Y., Li, F., Li, T., Chen, Y., Tian, Y., & Yu, X. (2021). Impsuic: A quality updating rule in mixing coins with maximum utilities. International Journal of Intelligent Systems, 36(3), 1182–1198. https://doi.org/10.1002/int.22337
  • Zhang, C., Cui, X., Lian, S., Xiao, R., Qiao, H., Li, S., Lou, Y., Feng, Y., Zhuang, L., Du, J., & Liu, X. (2022). Intelligent algorithm for dynamic functional brain network complexity from CN to AD. International Journal of Intelligent Systems, 37(8), 4715–4746. https://doi.org/10.1002/int.22737
  • Zhang, D., You, X., Liu, S., & Yang, K. (2019). Multi-colony ant colony optimization based on generalized jaccard similarity recommendation strategy. IEEE Access, 7, 157303–157317. https://doi.org/10.1109/ACCESS.2019.2949860
  • Zhang, N., Xue, J., Ma, Y., Zhang, R., Liang, T., & Tan, Y. A. (2021). Hybrid sequence-based android malware detection using natural language processing. International Journal of Intelligent Systems, 36(10), 5770–5784. https://doi.org/10.1002/int.22529
  • Zhang, Q., Wang, X., Yuan, J., Liu, L., Wang, R., Huang, H., & Li, Y. (2019). A hierarchical group key agreement protocol using orientable attributes for cloud computing. Information Sciences, 480, 55–69. https://doi.org/10.1016/j.ins.2018.12.023
  • Zhang, Q., Zhu, L., Li, Y., Ma, Z., Yuan, J., Zheng, J., & Ai, S. (2022). A group key agreement protocol for intelligent internet of things system. International Journal of Intelligent Systems, 37(1), 699–722. https://doi.org/10.1002/int.22644
  • Zhang, Q., Zhu, L., Wang, R., Li, J., Yuan, J., Liang, T., & Zheng, J. (2021). Group key agreement protocol among terminals of the intelligent information system for mobile edge computing. International Journal of Intelligent Systems, https://doi.org/10.1002/int.22544