1,243
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A data sharing method for remote medical system based on federated distillation learning and consortium blockchain

ORCID Icon, , , , &
Article: 2186315 | Received 04 Oct 2022, Accepted 27 Feb 2023, Published online: 13 Mar 2023

References

  • Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan, S., Murthy, C., Nguyen, B., Sethi, M., Singh, G., Smith, K., Sorniotti, A., Stathakopoulou, C., Vukolić, M., … Yellick, J. (2018, April). Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Conference (pp. 1–15). https://doi.org/10.1145/3190508.3190538
  • Bashshur, R. L., Doarn, C. R., Frenk, J. M., Kvedar, J. C., Shannon, G. W., & Woolliscroft, J. O. (2020). Beyond the COVID pandemic, telemedicine, and health care. Telemedicine and e-Health, 26(11), 1310–1313. https://doi.org/10.1089/tmj.2020.0328
  • Chang, H., Shejwalkar, V., Shokri, R., & Houmansadr, A. (2019). Cronus: Robust and heterogeneous collaborative learning with black-box knowledge transfer. arXiv preprint arXiv:1912.11279. https://doi.org/10.48550/arXiv.1912.11279
  • Cheng, S., Wu, J., Xiao, Y., & Liu, Y. (2021). Fedgems: Federated learning of larger server models via selective knowledge fusion. arXiv preprint arXiv:2110.11027. https://doi.org/10.48550/arXiv.2110.11027
  • Chowdhury, M. E., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M. A., Mahbub, Z. B., & Islam, M. T. (2020). Can AI help in screening viral and COVID-19 pneumonia? IEEE Access, 8, 132665–132676. https://doi.org/10.1109/ACCESS.2020.3010287
  • Cohen, J. P., Morrison, P., & Dao, L. (2020). COVID-19 image data collection. arXiv preprint arXiv:2003.11597. https://doi.org/10.48550/arXiv.2003.11597
  • Crosby, M., Pattanayak, P., Verma, S., & Kalyanaraman, V. (2016). Blockchain technology: Beyond bitcoin. Applied Innovation, 2(6–10), 71. https://scet.berkeley.edu/reports/blockchain.
  • Egala, B. S., Pradhan, A. K., Badarla, V., & Mohanty, S. P. (2021). Fortified-chain: A blockchain-based framework for security and privacy-assured internet of medical things with effective access control. IEEE Internet of Things Journal, 8(14), 11717–11731. https://doi.org/10.1109/JIOT.2021.3058946
  • El Rifai, O., Biotteau, M., de Boissezon, X., Megdiche, I., Ravat, F., & Teste, O. (2020, August). Blockchain-based federated learning in medicine. In International Conference on Artificial Intelligence in Medicine (pp. 214–224). Springer. https://doi.org/10.1007/978-3-030-59137-3_20
  • Fung, C., Yoon, C. J., & Beschastnikh, I. (2018). Mitigating sybils in federated learning poisoning. arXiv preprint arXiv:1808.04866. https://doi.org/10.48550/arXiv.1808.04866
  • Gong, X., Sharma, A., Karanam, S., Wu, Z., Chen, T., Doermann, D., & Innanje, A. (2021). Ensemble attention distillation for privacy-preserving federated learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 15076–15086). https://doi.org/10.1109/ICCV48922.2021.01480
  • Han, S., Park, S., Wu, F., Kim, S., Wu, C., Xie, X., & Cha, M. (2022). FedX: Unsupervised federated learning with cross knowledge distillation. In European Conference on Computer Vision (pp. 691–707). Springer. https://doi.org/10.1007/978-3-031-20056-4_40
  • Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., & Ramage, D. (2018). Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604. https://doi.org/10.48550/arXiv.1811.03604
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778). https://doi.org/10.1109/CVPR.2016.90
  • He, Y., Chen, Y., Yang, X., Yu, H., Huang, Y. H., & Gu, Y. (2022). Learning critically: Selective self-distillation in federated learning on non-iid data. IEEE Transactions on Big Data. https://doi.org/10.1109/TBDATA.2022.3189703
  • Hitaj, B., Ateniese, G., & Perez-Cruz, F. (2017, October). Deep models under the GAN: Information leakage from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (pp. 603–618). https://doi.org/10.1145/3133956.3134012
  • Josang, A., & Ismail, R. (2002, June). The beta reputation system. In Proceedings of the 15th Bled Electronic Commerce Conference (Vol. 5, pp. 2502–2511).
  • Kumar, A., Purohit, V., Bharti, V., Singh, R., & Singh, S. K. (2021). Medisecfed: Private and secure medical image classification in the presence of malicious clients. IEEE Transactions on Industrial Informatics, 18(8), 5648–5657.
  • Kumar, R., Khan, A. A., Kumar, J., Golilarz, N. A., Zhang, S., Ting, Y., & Wang, W. (2021). Blockchain-federated-learning and deep learning models for COVID-19 detection using CT imaging. IEEE Sensors Journal, 21(14), 16301–16314. https://doi.org/10.1109/JSEN.2021.3076767
  • Le, H. Q., Shin, J. H., Nguyen, M. N., & Hong, C. S. (2021, September). Distilling knowledge in federated learning. In 2021 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS) (pp. 196–201). IEEE. https://doi.org/10.23919/APNOMS52696.2021.9562670
  • Li, D., & Wang, J. (2019). FedMD: Heterogenous federated learning via model distillation. arXiv preprint arXiv:1910.03581. https://doi.org/10.48550/arXiv.1910.03581
  • Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smithy, V. (2019, November). Feddane: A federated newton-type method. In 2019 53rd Asilomar Conference on Signals, Systems, and Computers (pp. 1227–1231). IEEE. https://doi.org/10.1109/IEEECONF44664.2019.9049023
  • Lin, T., Kong, L., Stich, S. U., & Jaggi, M. (2020). Ensemble distillation for robust model fusion in federated learning. Advances in Neural Information Processing Systems, 33, 2351–2363. https://doi.org/10.48550/arXiv.2006.07242
  • Lu, Y., Huang, X., Dai, Y., Maharjan, S., & Zhang, Y. (2019). Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Transactions on Industrial Informatics, 16(6), 4177–4186. https://doi.org/10.1109/TII.2019.2942190
  • Lu, Y., Huang, X., Zhang, K., Maharjan, S., & Zhang, Y. (2020). Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles. IEEE Transactions on Vehicular Technology, 69(4), 4298–4311. https://doi.org/10.1109/TVT.2020.2973651
  • Maria, N. (2022, February). Telehealth: A new frontier in medicine – and security. Kaspersky. https://securelist.com/telehealth-report-2020-2021/105642/
  • McMahan, B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. (2017, April). Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics (pp. 1273–1282). https://doi.org/10.48550/arXiv.1602.05629
  • Melis, L., Song, C., De Cristofaro, E., & Shmatikov, V. (2019, May). Exploiting unintended feature leakage in collaborative learning. In 2019 IEEE Symposium on Security and Privacy (SP) (pp. 691–706). IEEE. https://doi.org/10.48550/arXiv.1805.04049
  • Nguyen, D. C., Pathirana, P. N., Ding, M., & Seneviratne, A. (2019). Blockchain for secure EHRs sharing of mobile cloud based e-health systems. IEEE Access, 7, 66792–66806. https://doi.org/10.1109/ACCESS.2019.2917555
  • Nguyen, T. V., Dakka, M. A., Diakiw, S. M., VerMilyea, M. D., Perugini, M., Hall, J. M. M., & Perugini, D. (2022). A novel decentralized federated learning approach to train on globally distributed, poor quality, and protected private medical data. Scientific Reports, 12(1), 1–12. https://doi.org/10.1038/s41598-022-12833-x
  • Oh, S., Park, J., Jeong, E., Kim, H., Bennis, M., & Kim, S. L. (2020). Mix2FLD: Downlink federated learning after uplink federated distillation with two-way mixup. IEEE Communications Letters, 24(10), 2211–2215. https://doi.org/10.1109/LCOMM.2020.3003693
  • Qu, Z., Zhang, Z., & Zheng, M. (2022). A quantum blockchain-enabled framework for secure private electronic medical records in internet of medical things. Information Sciences, 612, 942–958. https://doi.org/10.1016/j.ins.2022.09.028
  • Rahman, A., Hossain, M. S., Alrajeh, N. A., & Alsolami, F. (2020). Adversarial examples – security threats to COVID-19 deep learning systems in medical IoT devices. IEEE Internet of Things Journal, 8(12), 9603–9610. https://doi.org/10.1109/JIOT.2020.3013710
  • Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., Kiranyaz, S., Kashem, S. B. A., & Chowdhury, M. E. (2021). Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in Biology and Medicine, 132, Article 104319. https://doi.org/10.1016/j.compbiomed.2021.104319
  • Sattler, F., Korjakow, T., Rischke, R., & Samek, W. (2021). FedAUX: Leveraging unlabeled auxiliary data in federated learning. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3129371
  • Tan, L., Yu, K., Shi, N., Yang, C., Wei, W., & Lu, H. (2021). Towards secure and privacy-preserving data sharing for COVID-19 medical records: A blockchain-empowered approach. IEEE Transactions on Network Science and Engineering, 9(1), 271–281. https://doi.org/10.1109/TNSE.2021.3101842
  • Van Erven, T., & Harremos, P. (2014). Rényi divergence and Kullback-Leibler divergence. IEEE Transactions on Information Theory, 60(7), 3797–3820. https://doi.org/10.1109/TIT.2014.2320500
  • Wang, C., Yang, G., Papanastasiou, G., Zhang, H., Rodrigues, J. J., & de Albuquerque, V. H. C. (2020). Industrial cyber-physical systems-based cloud IoT edge for federated heterogeneous distillation. IEEE Transactions on Industrial Informatics, 17(8), 5511–5521. https://doi.org/10.1109/TII.2020.3007407
  • Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., & Liu, W. (2018). Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5265–5274). https://doi.org/10.1109/CVPR.2018.00552
  • Xing, H., Xiao, Z., Qu, R., Zhu, Z., & Zhao, B. (2022). An efficient federated distillation learning system for multitask time series classification. IEEE Transactions on Instrumentation and Measurement, 71, 1–12. https://doi.org/10.1109/TIM.2022.3201203
  • Yang, Z., & Sun, Q. (2022). A dynamic global backbone updating for communication-efficient personalised federated learning. Connection Science, 34(1), 2240–2264. https://doi.org/10.1080/09540091.2022.2114428
  • Yao, S., Jing, P., Li, P., & Chen, J. (2022). A multi-dimension traceable privacy-preserving prevention and control scheme of the COVID-19 epidemic based on blockchain. Connection Science, 34(1), 1654–1677. https://doi.org/10.1080/09540091.2022.2077912
  • Zheng, J., Wang, X., Yang, Q., Xiao, W., Sun, Y., & Liang, W. (2022). A blockchain-based lightweight authentication and key agreement scheme for internet of vehicles. Connection Science, 1–24. https://doi.org/10.1080/09540091.2022.2032602
  • Zheng, Z., Zhou, Y., Sun, Y., Wang, Z., Liu, B., & Li, K. (2022). Applications of federated learning in smart cities: Recent advances, taxonomy, and open challenges. Connection Science, 34(1), 1–28. https://doi.org/10.1080/09540091.2021.1936455
  • Zhou, S., Huang, H., Chen, W., Zhou, P., Zheng, Z., & Guo, S. (2020). Pirate: A blockchain-based secure framework of distributed machine learning in 5G networks. IEEE Network, 34(6), 84–91. https://doi.org/10.1109/MNET.001.1900658
  • Zhu, Z., Hong, J., & Zhou, J. (2021, July). Data-free knowledge distillation for heterogeneous federated learning. In International Conference on Machine Learning (pp. 12878–12889). https://doi.org/10.48550/arXiv.2105.10056