1,122
Views
1
CrossRef citations to date
0
Altmetric
Research Article

MS_HGNN: a hybrid online fraud detection model to alleviate graph-based data imbalance

, , , &
Article: 2191893 | Received 01 Feb 2023, Accepted 11 Mar 2023, Published online: 06 Apr 2023

References

  • Awoyemi, J. O., Adetunmbi, A. O., & Oluwadare, S. A. (2017). Credit card fraud detection using machine learning techniques: A comparative analysis. In International Conference on Computing Networking and Informatics (ICCNI) (pp. 1–9).
  • Benchaji, I., Douzi, S., & Ouahidi, B. E. (2018). Using genetic algorithm to improve classification of imbalanced datasets for credit card fraud detection (pp. 220–229). Springer.
  • Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class imbalance problem in convolutional neural networks. Neural Networks, 106, 249–259. https://doi.org/10.1016/j.neunet.2018.07.011
  • Chen, J., Hou, H., Gao, J., Ji, Y., & Bai, T. (2019). RGCN: Recurrent graph convolutional networks for target-dependent sentiment analysis. Knowledge Science, Engineering and Management. 2019: 667–675.
  • Chen, X., Liang, W., Xu, J., Wang, C., Li, K. C., & Qiu, M. (2021). An efficient service recommendation algorithm for cyber-physical-social systems. IEEE Transactions on Network Science and Engineering, 9(6), 3847–3859. https://doi.org/10.1109/TNSE.2021.3092204
  • Dou, Y., Liu, Z., Sun, L., Deng, Y., & Yu, P. S. (2020). Enhancing graph neural network-based fraud detectors against camouflaged fraudsters. In CIKM'20 (pp. 1–10).
  • Du, J., Zhang, S., Wu, G., Moura, J., & Kar, S. (2017).Topology adaptive graph convolutional networks[J]. arXiv preprint arXiv:1710. 10370.
  • Ebenuwa, S. H., Sharif, M. S., Alazab, M., & Al-Nemrat, A. (2019). Variance ranking attributes selection techniques for binary classification problem in imbalance data. IEEE Access, 7, 24649–24666. https://doi.org/10.1109/ACCESS.2019.2899578
  • Fatima, E. B., Omar, B., Abdelmajid, E. M., Rustam, F., & Choi, G. S. (2021). Minimizing the overlapping degree to improve class-imbalanced learning under sparse feature selection: Application to fraud detection. IEEE Access, 9, 28101–28110. https://doi.org/10.1109/Access.6287639
  • Fiore, U., Santis, A., Perla, F., Zanetti, P., & Palmieri, F. (2019). Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Information Sciences, 479, 448–455.
  • Ghoshdastidar, K., Jurgovsky, J., Siblini, W., & Granitzer, M. (2022). NAG: Neural feature aggregation framework for credit card fraud detection. Knowledge and Information Systems, 64(3), 831–858. https://doi.org/10.1007/s10115-022-01653-0
  • Hameed, I. A. (2022). A machine learning and blockchain based efficient fraud detection mechanism. Sensors, 22(19), 7162. https://doi.org/10.3390/s22197162
  • Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 1025–1035).
  • Hu, B., Zhang, Z., Shi, C., Zhou, J., & Qi, Y. (2019). Cash-out user detection based on attributed heterogeneous information network with a hierarchical attention mechanism. Proceedings of the AAAI Conference on Artificial Intelligence. 33(01): 946–953.
  • Jiang, J., Ni, B., & Wang, C. (2021). Financial fraud detection on micro-credit loan scenario via fuller location information embedding. In WWW '21: The Web Conference (pp. 238–246).
  • Kavitha, M., & Suriakala, M. (2018). Real time credit card fraud detection on huge imbalanced data using meta-classifiers. In 2017 International Conference on Inventive Computing and Informatics (ICICI).
  • Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
  • Liang, W., Long, J., Li, K. C., Xu, J., Ma, N., & Lei, X. (2021). A fast defogging image recognition algorithm based on bilateral hybrid filtering. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(2), 1–16. https://doi.org/10.1145/3391297
  • Liang, W., Xiao, L., Zhang, K., Tang, M., He, D., & Li, K. C. (2021). Data fusion approach for collaborative anomaly intrusion detection in blockchain-based systems. IEEE Internet of Things Journal, 9(16), 14741–14751. https://doi.org/10.1109/JIOT.2021.3053842
  • Liang, W., Zhang, D., Lei, X., Tang, M., Li, K. C., & Zomaya, A. (2020). Circuit copyright blockchain: Blockchain-based homomorphic encryption for IP circuit protection. IEEE Transactions on Emerging Topics in Computing, 9(3), 1410–1420. https://doi.org/10.1109/TETC.2020.2993032
  • Liu, Y., Ao, X., Qin, Z., Chi, J., & He, Q. (2021). Pick and choose: A GNN-based imbalanced learning approach for fraud detection. In WWW '21: The Web Conference (pp. 3168–3177).
  • Liu, Z., Chen, C., Yang, X., Zhou, J., & Song, L. (2018). Heterogeneous graph neural networks for malicious account detection. In CIMK'18 (pp. 2007–2085).
  • Liu, Z., Dou, Y., Yu, P., Deng, Y., & Peng, H. (2020). Alleviating the inconsistency problem of applying graph neural network to fraud detection. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1569–1572).
  • Long, J., Liang, W., Li, K. C., Wei, Y., & Marino, M. (2022). A regularized cross-layer ladder network for intrusion detection in industrial internet of things. IEEE Transactions on Industrial Informatics, 19(2), 1747–1755. https://doi.org/10.1109/TII.2022.3204034
  • Reurink, A. (2016). Financial fraud: A literature review. Journal of Economic Surveys, 16(5), 1292–1325. https://doi.org/10.1111/joes.12294
  • Rtayli, N., & Enneya, N. (2020). Enhanced credit card fraud detection based on SVM-recursive feature elimination and hyper-parameters optimization. Journal of Information Security and Applications, 55, 102596.
  • Velikovi, P., Cucurull, G., Casanova, A., Romero, A., & Bengio, Y. (2017). Graph attention networks (pp. 1–11).
  • Vermorel, J., & Mohri, M. (2005). Multi-armed bandit algorithms and empirical evaluation. In European Conference on Machine Learning (pp. 437–448).
  • Vinayaka, K. V., & Jaidhar, C. D. (2021). Android malware detection using function call graph with graph convolutional networks. In 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C), IEEE.
  • Waghade, S. S., & Karandikar, A. M. (2018). A comprehensive study of healthcare fraud detection based on machine learning. International Journal of Applied Engineering Research, 13(6), 4175–4178.
  • Wang, D., Lin, J., Cui, P., Jia, Q., Wang, Z., Fang, Y., & Qi, Y. (2020). A semi-supervised graph attentive network for financial fraud detection. In 2019 IEEE International Conference on Data Mining (ICDM) (pp. 598–607).
  • Wang, J., Wen, R., Wu, C., Huang, Y., & Xion, J. (2019). FdGars: Fraudster detection via graph convolutional networks in online app review system. In Companion the 2019 World Wide Web Conference (pp. 310–316).
  • Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., & Yu, P. S. (2019). Heterogeneous graph attention network. In The World Wide Web Conference (pp. 2022–2032).
  • Wang, Y., & Xu, W. (2018, January). Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud. Decision Support Systems, 105, 87–95. https://doi.org/10.1016/j.dss.2017.11.001
  • Zhang, Y., Fan, Y., Ye, Y., Zhao, L., & Shi, C. (2019). Key player identification in underground forums over attributed heterogeneous information network embedding framework. In The 28th ACM International Conference (pp. 549–558).
  • Zhang, Y., Liu, G., Zheng, L., & Yan, C. (2019). A hierarchical clustering strategy of processing class imbalance and its application in fraud detection. In IEEE 21st International Conference on High Performance Computing and Communications (pp. 1810–1816).