982
Views
0
CrossRef citations to date
0
Altmetric
Research Article

FedG2L: a privacy-preserving federated learning scheme base on “G2L” against poisoning attack

ORCID Icon &
Article: 2197173 | Received 28 Nov 2022, Accepted 22 Mar 2023, Published online: 06 Apr 2023

References

  • Achituve, I., Shamsian, A., Navon, A., Chechik, G., & Fetaya, E. (2021). Personalized federated learning with gaussian processes. In Annual Conference on Neural Information Processing Systems (NeurIPS), 2021, (pp. 8392–8406). MIT Press.
  • Agrawal, S., Sarkar, S., Alazab, M., Maddikunta, P. K. R., Gadekallu, T. R., & Pham, Q. V. (2021). Genetic cfl: hyperparameter optimization in clustered federated learning. Computational Intelligence and Neuroscience, (2021). https://doi.org/10.1155/2021/7156420
  • Awan, S., Luo, B., & Li, F. (2021). Contra: defending against poisoning attacks in federated learning. In European symposium on research in computer security (pp. 455–475). Springer.
  • Boonchoo, T., Ao, X., Liu, Y., Zhao, W., Zhuang, F., & He, Q. (2019). Grid-based dbscan: indexing and inference. Pattern Recognition, 90(2019), 271–284. https://doi.org/10.1016/j.patcog.2019.01.034
  • Büyüközkan, G., & Tüfekçi, G. (2021). A decision-making framework for evaluating appropriate business blockchain platforms using multiple preference formats and vikor. Information Sciences, 571(2021), 337–357. https://doi.org/10.1016/j.ins.2021.04.044
  • Cai, J., Li, C., Tao, X., & Tai, Y.-W. (2022). Image multi-inpainting via progressive generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 978–987). IEEE.
  • Chen, H., Liang, M., Liu, W., Wang, W., & Liu, P. X. (2022). An approach to boundary detection for 3d point clouds based on dbscan clustering. Pattern Recognition, 124(2022), 108431. https://doi.org/10.1016/j.patcog.2021.108431
  • Chen, J., Zhang, X., Zhang, R., Wang, C., & Liu, L. (2021a). De-pois: an attack-agnostic defense against data poisoning attacks. IEEE Transactions on Information Forensics and Security, 16(2021), 3412–3425. https://doi.org/10.1109/TIFS.2021.3080522
  • Chen, J., Zhang, X., Zhang, R., Wang, C., & Liu, L. (2021b). De-pois: an attack-agnostic defense against data poisoning attacks. IEEE Transactions on Information Forensics and Security, 16(2021), 3412–3425. https://doi.org/10.1109/TIFS.2021.3080522
  • Cohen, G., Afshar, S., Tapson, J., & Van Schaik, A. (2017). Emnist: extending mnist to handwritten letters. In 2017 international joint conference on neural networks (IJCNN) (pp. 2921–2926). IEEE.
  • de Sousa Pacheco, L., Rosário, D., Cerqueira, E., & Braun, T. (2021). Federated user clustering for non-iid federated learning. Electronic Communications of the EASST, 80(2021). https://doi.org/10.14279/tuj.eceasst.80.1130
  • Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). Density-based spatial clustering of applications with noise. In International conference on knowledge discovery and data mining (Vol. 240). https://doi.org/10.1109/ICSMC.2006.384571
  • Feng, C., Liu, B., Yu, K., Goudos, S. K., & Wan, S. (2021a). Blockchain-empowered decentralised horizontal federated learning for 5g-enabled uavs. IEEE Transactions on Industrial Informatics, 18(5), 3582–3592. https://doi.org/10.1109/TII.2021.3116132
  • Feng, Y., Zhang, W., Luo, X., & Zhang, B. (2021b). A consortium blockchain-based access control framework with dynamic orderer node selection for 5g-enabled industrial iot. IEEE Transactions on Industrial Informatics, 18(4), 2840–2848. https://doi.org/10.1109/TII.2021.3078183
  • Ge, N., Li, G., Zhang, L., & Liu, Y. (2022). Failure prediction in production line based on federated learning: an empirical study. Journal of Intelligent Manufacturing, 33(8), 2277–2294. https://doi.org/10.1007/s10845-021-01775-2
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144. https://doi.org/10.1145/3422622
  • Hou, D., Zhang, J., Man, K. L., Ma, J., & Peng, Z. (2021). A systematic literature review of blockchain-based federated learning: architectures, applications and issues. In 2021 2nd Information communication technologies conference (ICTC) (pp. 302–307). IEEE.
  • Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru, C., & Li, B. (2018). Manipulating machine learning: poisoning attacks and countermeasures for regression learning. In 2018 IEEE symposium on security and privacy (SP) (pp. 19–35). IEEE.
  • Jia, B., Zhang, X., Liu, J., Zhang, Y., Huang, K., & Liang, Y. (2021). Blockchain-enabled federated learning data protection aggregation scheme with differential privacy and homomorphic encryption in iiot. IEEE Transactions on Industrial Informatics, 18(6), 4049–4058. https://doi.org/10.1109/TII.2021.3085960
  • Kim, J., Choi, Y., & Uh, Y. (2022). Feature statistics mixing regularization for generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11294–11303). IEEE.
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791
  • Levine, A., & Feizi, S. (2020). Deep partition aggregation: Provable defense against general poisoning attacks. arXiv preprint arXiv:2006.14768.
  • Li, D., Han, D., Weng, T.-H., Zheng, Z., Li, H., Liu, H., Castiglione, A., & Li, K.-C. (2022). Blockchain for federated learning toward secure distributed machine learning systems: a systemic survey. Soft Computing, 26(9), 4423–4440. https://doi.org/10.1007/s00500-021-06496-5
  • Li, X., Qu, Z., Zhao, S., Tang, B., Lu, Z., & Liu, Y. (2023). Lomar: a local defense against poisoning attack on federated learning. IEEE Transactions on Dependable and Secure Computing, 20(1), 437–450. https://doi.org/10.1109/TDSC.2021.3135422
  • Liu, X., Li, H., Xu, G., Chen, Z., Huang, X., & Lu, R. (2021). Privacy-enhanced federated learning against poisoning adversaries. IEEE Transactions on Information Forensics and Security, 16(2021), 4574–4588. https://doi.org/10.1109/TIFS.2021.3108434
  • Ma, Z., Ma, J., Miao, Y., Li, Y., & Deng, R. H. (2022). Shieldfl: mitigating model poisoning attacks in privacy-preserving federated learning. IEEE Transactions on Information Forensics and Security, 17(2022), 1639–1654. https://doi.org/10.1109/TIFS.2022.3169918
  • Miao, Y., Liu, Z., Li, H., Choo, K.-K. R., & Deng, R. H. (2022). Privacy-preserving byzantine-robust federated learning via blockchain systems. IEEE Transactions on Information Forensics and Security, 17(2022), 2848–2861. https://doi.org/10.1109/TIFS.2022.3196274
  • Odena, A., Olah, C., & Shlens, J. (2017). Conditional image synthesis with auxiliary classifier gans. In International conference on machine learning (pp. 2642–2651). PMLR.
  • Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity classes. In International conference on the theory and applications of cryptographic techniques (pp. 223–238). Springer.
  • Schneider, T., Suresh, A., & Yalame, H. (2023). Comments on “privacy-enhanced federated learning against poisoning adversaries”. IEEE Transactions on Information Forensics and Security, 2023(18), 1407–1409. https://doi.org/10.1109/TIFS.2023.3238544
  • Shejwalkar, V., & Houmansadr, A. (2021). Manipulating the byzantine: optimizing model poisoning attacks and defenses for federated learning. In NDSS. ISOC.
  • Sun, J., Li, A., DiValentin, L., Hassanzadeh, A., Chen, Y., & Li, H. (2021). Fl-wbc: enhancing robustness against model poisoning attacks in federated learning from a client perspective. In Advances in Neural Information Processing Systems (Vol. 34, pp. 12613–12624). MIT Press.
  • Wang, J., Guo, S., Xie, X., & Qi, H. (2022a). Protect privacy from gradient leakage attack in federated learning. In IEEE INFOCOM 2022-IEEE conference on computer communications (pp. 580–589). IEEE.
  • Wang, R., Wang, X., Chen, H., Picek, S., Liu, Z., & Liang, K. (2022b). Brief but powerful: Byzantine-robust and privacy-preserving federated learning via model segmentation and secure clustering. arXiv preprint arXiv:2208.10161.
  • Weerasinghe, S., Alpcan, T., Erfani, S. M., & Leckie, C. (2021). Defending support vector machines against data poisoning attacks. IEEE Transactions on Information Forensics and Security, 16(2021), 2566–2578. https://doi.org/10.1109/TIFS.10206
  • Wei, W., & Liu, L. (2021). Gradient leakage attack resilient deep learning. IEEE Transactions on Information Forensics and Security, 17(2021), 303–316. https://doi.org/10.1109/TIFS.2021.3139777
  • Wen, J., Zhao, B. Z. H., Xue, M., Oprea, A., & Qian, H. (2021a). With great dispersion comes greater resilience: efficient poisoning attacks and defenses for linear regression models. IEEE Transactions on Information Forensics and Security, 16(2021), 3709–3723. https://doi.org/10.1109/TIFS.2021.3087332
  • Wen, J., Zhao, B. Z. H., Xue, M., Oprea, A., & Qian, H. (2021b). With great dispersion comes greater resilience: efficient poisoning attacks and defenses for linear regression models. IEEE Transactions on Information Forensics and Security, 16(2021), 3709–3723. https://doi.org/10.1109/TIFS.2021.3087332
  • Xiao, X., Tang, Z., Li, C., Xiao, B., & Li, K. (2023). SCA: sybil-based collusion attacks of iiot data poisoning in federated learning. IEEE Transactions on Industrial Informatics, 19(3), 2608–2618. https://doi.org/10.1109/TII.2022.3172310
  • Xu, M., & Li, X. (2022). Fedbc: an efficient and privacy-preserving federated consensus scheme. In International symposium on security and privacy in social networks and big data (pp. 148–162). Springer.
  • Yang, Z., Shi, Y., Zhou, Y., Wang, Z., & Yang, K. (2023). Trustworthy federated learning via blockchain. IEEE Internet of Things Journal, 10(1), 92–109. https://doi.org/10.1109/JIOT.2022.3201117