1,097
Views
0
CrossRef citations to date
0
Altmetric
Research Article

NAS-YOLOX: a SAR ship detection using neural architecture search and multi-scale attention

, , &
Pages 1-32 | Received 30 Apr 2023, Accepted 06 Sep 2023, Published online: 04 Oct 2023

References

  • Cai, Z., & Vasconcelos, N. (2018). Cascade r-cnn: Delving into high quality object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • Chen, C., Han, D., & Chang, C.-C. (2022). CAAN: Context-aware attention network for visual question answering. Pattern Recognition, 132, 108980. https://doi.org/10.1016/j.patcog.2022.108980
  • Chen, C., Han, D., & Shen, X. (2023). CLVIN: Complete language-vision interaction network for visual question answering. Knowledge-Based Systems, 275, 110706. https://doi.org/10.1016/j.knosys.2023.110706
  • Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2019). Rethinking atrous convolution for semantic image segmentation. arXiv 2017. arXiv preprint arXiv:1706.05587, 2.
  • Chen, P., Zhou, H., Li, Y., Liu, P., & Liu, B. (2023). A novel deep learning network with deformable convolution and attention mechanisms for complex scenes ship detection in SAR images. Remote Sensing, 15(10), 2589. https://doi.org/10.3390/rs15102589
  • Chen, Q., Wang, Y., Yang, T., Zhang, X., Cheng, J., & Sun, J. (2021). You only look one-level feature. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  • Chen, S., Zhan, R., Wang, W., & Zhang, J. (2021). Learning slimming SAR ship object detector through network pruning and knowledge distillation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1267–1282. https://doi.org/10.1109/JSTARS.2020.3041783
  • Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., & Barnard, K. (2021). Attentional feature fusion. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
  • Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision.
  • Farah, F., Laroussi, T., & Madjidi, H. (2022). A fast ship detection algorithm based on automatic censoring for multiple target situations in SAR images. 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA).
  • Feng, C., Zhong, Y., Gao, Y., Scott, M. R., & Huang, W. (2021). Tood: Task-aligned one-stage object detection. 2021 IEEE/CVF International Conference on Computer Vision (ICCV).
  • Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. (2021). Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430.
  • Ghiasi, G., Lin, T.-Y., & Le, Q. V. (2019). Nas-fpn: Learning scalable feature pyramid architecture for object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  • Girshick, R. (2015). Fast r-cnn. Proceedings of the IEEE International Conference on Computer Vision.
  • Guo, H., Yang, X., Wang, N., Song, B., & Gao, X. (2020). A rotational libra R-CNN method for ship detection. IEEE Transactions on Geoscience and Remote Sensing, 58(8), 5772–5781. https://doi.org/10.1109/TGRS.2020.2969979
  • Han, D., Pan, N., & Li, K.-C. (2022). A traceable and revocable ciphertext-policy attribute-based encryption scheme based on privacy protection. IEEE Transactions on Dependable and Secure Computing, 19(1), 316–327. https://doi.org/10.1109/TDSC.2020.2977646
  • Han, L., Liu, D., & Guan, D. (2022). Ship detection in SAR images by saliency analysis of multiscale superpixels. Remote Sensing Letters, 13(7), 708–715. https://doi.org/10.1080/2150704X.2022.2068988
  • Hou, Q., Zhou, D., & Feng, J. (2021). Coordinate attention for efficient mobile network design. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  • Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • Hu, Q., Hu, S., Liu, S., Xu, S., & Zhang, Y.-D. (2022). Finet: A feature interaction network for SAR ship object-level and pixel-level detection. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–15.
  • Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. International Conference on Machine Learning.
  • Jiang, M., Gu, L., Li, X., Gao, F., & Jiang, T. (2023). Ship contour extraction from SAR images based on faster R-CNN and chan–vese model. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–14.
  • Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A review of yolo algorithm developments. Procedia Computer Science, 199, 1066–1073. https://doi.org/10.1016/j.procs.2022.01.135
  • Karachristos, K., & Anastassopoulos, V. (2023). Automatic ship detection using PolSAR imagery and the double scatterer model. Geomatics, 3(1), 174–187. https://doi.org/10.3390/geomatics3010009
  • Ke, X., Zhang, X., Zhang, T., Shi, J., & Wei, S. (2021). SAR ship detection based on an improved faster R-CNN using deformable convolution. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.
  • Leng, X., Ji, K., Yang, K., & Zou, H. (2015). A bilateral CFAR algorithm for ship detection in SAR images. IEEE Geoscience and Remote Sensing Letters, 12(7), 1536–1540. https://doi.org/10.1109/LGRS.2015.2412174
  • Li, D., Han, D., Weng, T.-H., Zheng, Z., Li, H., Liu, H., Castiglione, A., & Li, K.-C. (2022). Blockchain for federated learning toward secure distributed machine learning systems: A systemic survey. Soft Computing, 26(9), 4423–4440. https://doi.org/10.1007/s00500-021-06496-5
  • Li, D., Han, D., Zheng, Z., Weng, T.-H., Li, H., Liu, H., Castiglione, A., & Li, K.-C. (2022). MOOCschain: A blockchain-based secure storage and sharing scheme for MOOCs learning. Computer Standards & Interfaces, 81, 103597. https://doi.org/10.1016/j.csi.2021.103597
  • Li, H., Han, D., & Tang, M. (2022). A privacy-preserving storage scheme for logistics data with assistance of blockchain. IEEE Internet of Things Journal, 9(6), 4704–4720. https://doi.org/10.1109/JIOT.2021.3107846
  • Li, J., Han, D., Wu, Z., Wang, J., Li, K.-C., & Castiglione, A. (2023). A novel system for medical equipment supply chain traceability based on alliance chain and attribute and role access control. Future Generation Computer Systems, 142, 195–211. https://doi.org/10.1016/j.future.2022.12.037
  • Li, S., Fu, X., & Dong, J. (2022). Improved ship detection algorithm based on YOLOX for SAR outline enhancement image. Remote Sensing, 14(16), 4070. https://doi.org/10.3390/rs14164070
  • Li, T., Liu, Z., Xie, R., & Ran, L. (2018). An improved superpixel-level CFAR detection method for ship targets in high-resolution SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(1), 184–194. https://doi.org/10.1109/JSTARS.2017.2764506
  • Li, Y., Zhang, S., & Wang, W.-Q. (2020). A lightweight faster R-CNN for ship detection in SAR images. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.
  • Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. Proceedings of the IEEE International Conference on Computer Vision.
  • Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14.
  • Ma, F., Sun, X., Zhang, F., Zhou, Y., & Li, H.-C. (2022). What catch your attention in SAR images: Saliency detection based on soft-superpixel lacunarity cue. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–17.
  • Miao, T., Zeng, H., Yang, W., Chu, B., Zou, F., Ren, W., & Chen, J. (2022). An improved lightweight RetinaNet for ship detection in SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 4667–4679. https://doi.org/10.1109/JSTARS.2022.3180159
  • Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., & Lin, D. (2019). Libra r-cnn: Towards balanced learning for object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  • Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
  • Sun, Z., Dai, M., Leng, X., Lei, Y., Xiong, B., Ji, K., & Kuang, G. (2021). An anchor-free detection method for ship targets in high-resolution SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7799–7816. https://doi.org/10.1109/JSTARS.2021.3099483
  • Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  • Tian, Q., Han, D., Li, K.-C., Liu, X., Duan, L., & Castiglione, A. (2020). An intrusion detection approach based on improved deep belief network. Applied Intelligence, 50(10), 3162–3178. https://doi.org/10.1007/s10489-020-01694-4
  • Tian, Z., Shen, C., Chen, H., & He, T. (2019). Fcos: Fully convolutional one-stage object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision.
  • Wang, R., Xu, F., Pei, J., Wang, C., Huang, Y., Yang, J., & Wu, J. (2019). An improved faster R-CNN based on MSER decision criterion for SAR image ship detection in harbor. IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.
  • Wei, S., Zeng, X., Qu, Q., Wang, M., Su, H., & Shi, J. (2020). HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation. Ieee Access, 8, 120234–120254. https://doi.org/10.1109/ACCESS.2020.3005861
  • Woo, S., Park, J., Lee, J.-Y., & Kweon, I. S. (2018). Cbam: Convolutional block attention module. Proceedings of the European Conference on Computer Vision (ECCV).
  • Xia, R., Chen, J., Huang, Z., Wan, H., Wu, B., Sun, L., Yao, B., Xiang, H., & Xing, M. (2022). CRTranssar: A visual transformer based on contextual joint representation learning for SAR ship detection. Remote Sensing, 14(6), 1488. https://doi.org/10.3390/rs14061488
  • Xu, Z., Gao, R., Huang, K., & Xu, Q. (2022). Triangle distance IoU loss, attention-weighted feature pyramid network, and rotated-SARShip dataset for arbitrary-oriented SAR ship detection. Remote Sensing, 14(18), 4676. https://doi.org/10.3390/rs14184676
  • Yang, S., An, W., Li, S., Wei, G., & Zou, B. (2022). An improved FCOS method for ship detection in SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 8910–8927. https://doi.org/10.1109/JSTARS.2022.3213583
  • Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization. arXiv preprint arXiv:1409.2329.
  • Zhai, L., Li, Y., & Su, Y. (2016). Inshore ship detection via saliency and context information in high-resolution SAR images. IEEE Geoscience and Remote Sensing Letters, 13(12), 1870–1874. https://doi.org/10.1109/LGRS.2016.2616187
  • Zhang, L., Zhang, Z., Lu, S., Xiang, D., & Su, Y. (2022). Fast superpixel-based non-window CFAR ship detector for SAR imagery. Remote Sensing, 14(9), 2092. https://doi.org/10.3390/rs14092092
  • Zhang, S., Chi, C., Yao, Y., Lei, Z., & Li, S. Z. (2020). Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  • Zhang, T., & Zhang, X. (2019). High-speed ship detection in SAR images based on a grid convolutional neural network. Remote Sensing, 11(10), 1206. https://doi.org/10.3390/rs11101206
  • Zhang, T., Zhang, X., & Ke, X. (2021). Quad-FPN: A novel quad feature pyramid network for SAR ship detection. Remote Sensing, 13(14), 2771. https://doi.org/10.3390/rs13142771
  • Zhang, T., Zhang, X., Li, J., Xu, X., Wang, B., Zhan, X., Xu, Y., Ke, X., Zeng, T., & Su, H. (2021). SAR ship detection dataset (SSDD): Official release and comprehensive data analysis. Remote Sensing, 13(18), 3690. https://doi.org/10.3390/rs13183690
  • Zhang, T., Zhang, X., Shi, J., Wei, S., Wang, J., & Li, J. (2020). Balanced feature pyramid network for ship detection in synthetic aperture radar images. 2020 IEEE Radar Conference (RadarConf20).
  • Zhang, X., Wan, F., Liu, C., Ji, X., & Ye, Q. (2022). Learning to match anchors for visual object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(6), 3096–3109. https://doi.org/10.1109/TPAMI.2021.3050494
  • Zhao, Y., Zhao, L., Xiong, B., & Kuang, G. (2020). Attention receptive pyramid network for ship detection in SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2738–2756. https://doi.org/10.1109/JSTARS.2020.2997081
  • Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., & Ren, D. (2020). Distance-IoU loss: Faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence.
  • Zhou, K., Zhang, M., Wang, H., & Tan, J. (2022). Ship detection in SAR images based on multi-scale feature extraction and adaptive feature fusion. Remote Sensing, 14(3), 755. https://doi.org/10.3390/rs14030755
  • Zhou, X., & Li, T. (2023). Ship detection in PolSAR images based on a modified polarimetric notch filter. Electronics, 12(12), 2683. https://doi.org/10.3390/electronics12122683
  • Zhu, M., Hu, G., Zhou, H., Wang, S., Feng, Z., & Yue, S. (2022). A ship detection method via redesigned FCOS in large-scale SAR images. Remote Sensing, 14(5), 1153. https://doi.org/10.3390/rs14051153
  • Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2020). Deformable detr: Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159.