706
Views
0
CrossRef citations to date
0
Altmetric
Research Article

CPW-DICE: a novel center and pixel-based weighting for damage segmentation

, , &
Article: 2259115 | Received 07 Mar 2023, Accepted 10 Sep 2023, Published online: 26 Sep 2023

References

  • Badrinarayanan, V., Kendall, A., & Cipolla, R. (2016). SegNet: A deep convolutional encoder-decoder architecture for image segmentation (arXiv:1511.00561). arXiv. http://arxiv.org/abs/1511.00561
  • Balci, B., Artan, Y., Alkan, B., & Elihos, A. (2019). Fraud (p. 198). https://doi.org/10.5220/0007724600002179
  • Chaurasia, A., & Culurciello, E. (2017). Linknet: Exploiting encoder representations for efficient semantic segmentation. 2017 IEEE Visual Communications and Image Processing (VCIP), 1–4. https://doi.org/10.1109/VCIP.2017.8305148
  • Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous convolution for semantic image segmentation (arXiv:1706.05587). arXiv. http://arxiv.org/abs/1706.05587
  • Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation (arXiv:1802.02611). arXiv. http://arxiv.org/abs/1802.02611
  • Dimri, A., Paul, A., Girish, D., Lee, P., Afra, S., & Jakubowski, A. (2022). A multi-input multi-label claims channeling system using insurance-based language models. Expert Systems with Applications, 202, 117166. https://doi.org/10.1016/j.eswa.2022.117166
  • Dong, H., & Wang, G. (2022). Disf: Dynamic instance segmentation with semantic features. In 2022 26th international conference on pattern recognition (ICPR) (pp. 3772–3778). https://doi.org/10.1109/ICPR56361.2022.9956531
  • Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021). An image is worth 16 (16 words: Transformers for image recognition at scale (arXiv:2010.11929). arXiv. http://arxiv.org/abs/2010.11929
  • Eelbode, T., Bertels, J., Berman, M., Vandermeulen, D., Maes, F., Bisschops, R., & Blaschko, M. B. (2020). Optimization for medical image segmentation: Theory and practice when evaluating with dice score or jaccard index. IEEE Transactions on Medical Imaging, 39(11), 3679–3690. https://doi.org/10.1109/TMI.2020.3002417
  • Fang, X., Xu, X., Xia, J. J., Sanford, T., Turkbey, B., Xu, S., Wood, B. J., & Yan, P. (2023). Shape description losses for medical image segmentation. Machine Vision and Applications, 34(4), 57. https://doi.org/10.1007/s00138-023-01407-0
  • Fare Garnot, V. S., & Landrieu, L. (2021). Panoptic segmentation of satellite image time series with convolutional temporal attention networks. In 2021 IEEE/CVF International conference on computer vision (ICCV) (pp. 4852–4861). https://doi.org/10.1109/ICCV48922.2021.00483
  • Gu, J., Kwon, H., Wang, D., Ye, W., Li, M., Chen, Y.-H., Lai, L., Chandra, V., & Pan, D. Z. (2022a). Multi-scale high-resolution vision transformer for semantic segmentation. In 2022 IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 12084–12093). https://doi.org/10.1109/CVPR52688.2022.01178.
  • Gu, W., Bai, S., & Kong, L. (2022b). A review on 2D instance segmentation based on deep neural networks. Image and Vision Computing, 120, 104401. http://dx.doi.org/10.1016/j.imavis.2022.104401
  • Guha, A., Alahmadi, A., Samanta, D., Khan, M. Z., & Alahmadi, A. H. (2022). A multi-modal approach to digital document stream segmentation for title insurance domain. IEEE Access, 10, 11341–11353. https://doi.org/10.1109/ACCESS.2022.3144185
  • Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., Roth, H. R., & Xu, D. (2022). UNETR: Transformers for 3D medical image segmentation. In 2022 IEEE/CVF winter conference on applications of computer vision (WACV) (pp. 1748–1758). https://doi.org/10.1109/WACV51458.2022.00181.
  • He, S., Li, Q., Li, X., & Zhang, M. (2023). An optimized segmentation convolutional neural network with dynamic energy loss function for 3D reconstruction of lumbar spine MR images. Computers in Biology and Medicine, 160, 106839. https://doi.org/10.1016/j.compbiomed.2023.106839
  • Huang, Z., Wang, X., Wei, Y., Huang, L., Shi, H., Liu, W., & Huang, T. S. (2023). Ccnet: Criss-cross attention for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(6), 6896–6908. https://doi.org/10.1109/TPAMI.2020.3007032
  • Jadon, S. (2020). A survey of loss functions for semantic segmentation. In 2020 IEEE conference on computational intelligence in bioinformatics and computational biology (CIBCB) (pp. 1–7). https://doi.org/10.1109/CIBCB48159.2020.9277638
  • Krestenitis, M., Orfanidis, G., Ioannidis, K., Avgerinakis, K., Vrochidis, S., & Kompatsiaris, I. (2019). Oil spill identification from satellite images using deep neural networks. Remote Sensing, 11(15), 1762. https://doi.org/10.3390/rs11151762
  • Li, P., Shen, B., & Dong, W. (2018). An anti-fraud system for car insurance claim based on visual evidence (arXiv:1804.11207). arXiv. http://arxiv.org/abs/1804.11207
  • Li, X., & Chen, D. (2022). A survey on deep learning-based panoptic segmentation. Digital Signal Processing, 120, 103283. https://doi.org/10.1016/j.dsp.2021.103283
  • Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2018). Focal loss for dense object detection (arXiv:1708.02002). arXiv. http://arxiv.org/abs/1708.02002
  • Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows (arXiv:2103.14030). arXiv. http://arxiv.org/abs/2103.14030
  • Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation (arXiv:1411.4038). arXiv. http://arxiv.org/abs/1411.4038
  • Lu, J., Lin, K., Chen, R., Lin, M., Chen, X., & Lu, P. (2023). Health insurance fraud detection by using an attributed heterogeneous information network with a hierarchical attention mechanism. BMC Medical Informatics and Decision Making, 23(1), 62. https://doi.org/10.1186/s12911-023-02152-0
  • Mallios, D., Xiaofei, L., McLaughlin, N., Rincon, J. M. D., Galbraith, C., & Garland, R. (2023). Vehicle damage severity estimation for insurance operations using in-the-wild mobile images. IEEE Access, 11, 78644–78655. https://doi.org/10.1109/ACCESS.2023.3299223
  • Mao, L., Ren, F., Yang, D., & Zhang, R. (2023). Chainnet: Deep chain instance segmentation network for panoptic segmentation. Neural Processing Letters, 55(1), 615–630. https://doi.org/10.1007/s11063-022-10899-2
  • Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N., & Terzopoulos, D. (2021). Image segmentation using deep learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/TPAMI.2021.3059968
  • Mohan, R., & Valada, A. (2021). Efficientps: Efficient panoptic segmentation. International Journal of Computer Vision, 129(5), 1551–1579. https://doi.org/10.1007/s11263-021-01445-z
  • Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51–59. https://doi.org/10.1016/0031-3203(95)00067-4
  • Parhizkar, M., & Amirfakhrian, M. (2022). Car detection and damage segmentation in the real scene using a deep learning approach. International Journal of Intelligent Robotics and Applications, 6(2), 231–245. https://doi.org/10.1007/s41315-022-00231-5
  • Pasupa, K., Kittiworapanya, P., Hongngern, N., & Woraratpanya, K. (2022). Evaluation of deep learning algorithms for semantic segmentation of car parts. Complex & Intelligent Systems, 8(5), 3613–3625. https://doi.org/10.1007/s40747-021-00397-8
  • Patel, N., Shinde, S., & Poly, F. (2020). Automated damage detection in operational vehicles using mask R-CNN (pp. 563–571). https://doi.org/10.1007/978-981-15-3242-9_54
  • Patil, K., Kulkarni, M., Sriraman, A., & Karande, S. (2017). Deep learning based Car damage classification. In 2017 16th IEEE international conference on machine learning and applications (ICMLA) (pp. 50–54). https://doi.org/10.1109/ICMLA.2017.0-179
  • Ramirez Rivera, A., Castillo, J., & Chae, O. (2012). Local directional number pattern for face analysis: Face and expression recognition. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 22, 1740–1752. https://doi.org/10.1109/TIP.2012.2235848
  • Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. (2019). Generalized intersection over union: A metric and a loss for bounding box regression (arXiv:1902.09630). arXiv. http://arxiv.org/abs/1902.09630
  • Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical image computing and computer-assisted intervention – MICCAI 2015 (Vol. 9351, pp. 234–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28
  • Salehi, S. S. M., Erdogmus, D., & Gholipour, A. (2017). Tversky loss function for image segmentation using 3D fully convolutional deep networks (arXiv:1706.05721). arXiv. http://arxiv.org/abs/1706.05721
  • Shamsoshoara, A., Afghah, F., Razi, A., Zheng, L., Fulé, P. Z., & Blasch, E. (2020). Aerial imagery pile burn detection using deep learning: The FLAME dataset (arXiv:2012.14036). arXiv. http://arxiv.org/abs/2012.14036
  • Singh, R., Ayyar, M. P., Sri Pavan, T. V., Gosain, S., & Shah, R. R. (2019). Automating car insurance claims using deep learning techniques. In 2019 IEEE fifth international conference on multimedia big data (BigMM) (pp. 199–207). https://doi.org/10.1109/BigMM.2019.00-25
  • Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S., & Cardoso, M. J. (2017). Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations (Vol. 10553, pp. 240–248). https://doi.org/10.1007/978-3-319-67558-9_28
  • Taghanaki, S. A., Zheng, Y., Zhou, S. K., Georgescu, B., Sharma, P., Xu, D., Comaniciu, D., & Hamarneh, G. (2021). Combo loss: Handling input and output imbalance in multi-organ segmentation (arXiv:1805.02798). arXiv. http://arxiv.org/abs/1805.02798
  • van Ruitenbeek, R. E., & Bhulai, S. (2022). Convolutional neural networks for vehicle damage detection. Machine Learning with Applications, 9, 100332. https://doi.org/10.1016/j.mlwa.2022.100332
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need (arXiv:1706.03762). arXiv. http://arxiv.org/abs/1706.03762
  • Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., & Xiao, B. (2020). Deep high-resolution representation learning for visual recognition (arXiv:1908.07919). arXiv. http://arxiv.org/abs/1908.07919
  • Wang, L., Li, R., Zhang, C., Fang, S., Duan, C., Meng, X., & Atkinson, P. M. (2022). UNetformer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 190, 196–214. https://doi.org/10.1016/j.isprsjprs.2022.06.008
  • Wang, L., Wang, C., Sun, Z., & Chen, S. (2020). An Improved Dice Loss for Pneumothorax Segmentation by Mining the Information of Negative Areas. IEEE Access, 8, 167939–167949. http://dx.doi.org/10.1109/Access.6287639
  • Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., Lu, T., Luo, P., & Shao, L. (2021). Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 548–558. https://doi.org/10.1109/ICCV48922.2021.00061
  • Waqas, U., Akram, N., Kim, S., Lee, D., & Jeon, J. (2020). Vehicle damage classification and fraudulent image detection including moiré effect using deep learning. In 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (pp. 1–5). https://doi.org/10.1109/CCECE47787.2020.9255806
  • Wong, K. C. L., Moradi, M., Tang, H., & Syeda-Mahmood, T. (2018). 3D segmentation with exponential logarithmic loss for highly unbalanced object sizes (Vol. 11072, pp. 612–619). https://doi.org/10.1007/978-3-030-00931-1_70
  • Xie, Z., Shu, C., Fu, Y., Zhou, J., & Chen, D. (2023). Balanced loss function for accurate surface defect segmentation. Applied Sciences, 13(2), 826. https://doi.org/10.3390/app13020826
  • Yang, D., Li, Y., & Yu, J. (2023). Multi-task thyroid tumor segmentation based on the joint loss function. Biomedical Signal Processing and Control, 79, 104249. https://doi.org/10.1016/j.bspc.2022.104249
  • Yeung, M., Sala, E., Schönlieb, C.-B., & Rundo, L. (2021). Unified focal loss: Generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation (arXiv:2102.04525). arXiv. http://arxiv.org/abs/2102.04525
  • Yi-de, M., Qing, L., & Qian, Z. (2004). Automated image segmentation using improved PCNN model based on cross-entropy. Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004, 743–746. https://doi.org/10.1109/ISIMP.2004.1434171
  • Yuan, W., & Xu, W. (2021). Neighborloss: A loss function considering spatial correlation for semantic segmentation of remote sensing image. IEEE Access, 9, 75641–75649. https://doi.org/10.1109/ACCESS.2021.3082076
  • Zhang, J., Jiang, H., Shao, H., Song, Q., Wang, X., & Zong, D. (2023). Semantic segmentation of in-vehicle point cloud with improved RANGENET++ loss function. IEEE Access, 11, 8569–8580. https://doi.org/10.1109/ACCESS.2023.3238415
  • Zhang, Q., Chang, X., & Bian, S. B. (2020). Vehicle-damage-detection segmentation algorithm based on improved mask RCNN. IEEE Access, 8, 6997–7004. https://doi.org/10.1109/ACCESS.2020.2964055
  • Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T., Torr, P. H. S., & Zhang, L. (2021). Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers (arXiv:2012.15840). arXiv. http://arxiv.org/abs/2012.15840
  • Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. (2018). UNet++: A nested U-net architecture for medical image segmentation (arXiv:1807.10165). arXiv. http://arxiv.org/abs/1807.10165
  • Zhu, X., Liang, J., & Hauptmann, A. (2020). MSNet: A multilevel instance segmentation network for natural disaster damage assessment in aerial videos (arXiv:2006.16479). arXiv. http://arxiv.org/abs/2006.16479
  • Zhu, Y., Yin, X., & Meijering, E. (2023). A compound loss function with shape aware weight map for microscopy cell segmentation. IEEE Transactions on Medical Imaging, 42(5), 1278–1288. https://doi.org/10.1109/TMI.2022.3226226