470
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Emotion recognition based on convolutional gated recurrent units with attention

, , , , , , & show all
Article: 2289833 | Received 22 May 2023, Accepted 27 Nov 2023, Published online: 09 Dec 2023

References

  • Arora, S., Cohen, N., & Hazan, E. (2018). On the optimization of deep networks: Implicit acceleration by overparameterization. In International conference on machine learning (pp. 244–253). PMLR.
  • Bahari, F., & Janghorbani, A. (2013). Eeg-based emotion recognition using recurrence plot analysis and k nearest neighbor classifier. In 2013 20th Iranian Conference on Biomedical Engineering (ICBME) (pp. 228–233). IEEE.
  • Bascil, M. S., Tesneli, A. Y., & Temurtas, F. (2016). Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN. Australasian Physical & Engineering Sciences in Medicine, 39(3), 665–676. https://doi.org/10.1007/s13246-016-0462-x.
  • Cao, J., Li, Y., Sun, M., Chen, Y., Lischinski, D., Cohen-Or, D., Chen, B., & Tu, C. (2022). Do-conv: Depthwise over-parameterized convolutional layer. IEEE Transactions on Image Processing.
  • Cecotti, H., & Graeser, A. (2008). Convolutional neural network with embedded Fourier transform for EEG classification. In 2008 19th International conference on pattern recognition (pp. 1–4). IEEE.
  • Duan, R. N., Wang, X. W., & Lu, B. L. (2012). EEG-based emotion recognition in listening music by using support vector machine and linear dynamic system. In International conference on neural information processing (pp. 468–475). Springer, Berlin, Heidelberg.
  • Duan, R. N., Zhu, J. Y., & Lu, B. L. (2013). Differential entropy feature for EEG-based emotion classification. In 2013 6th International IEEE/EMBS conference on neural engineering (NER) (pp. 81–84). IEEE.
  • Frantzidis, C. A., Bratsas, C., Papadelis, C. L., Konstantinidis, E., Pappas, C., & Bamidis, P. D. (2010). Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli. IEEE Transactions on Information Technology in Biomedicine, 14(3), 589–597. https://doi.org/10.1109/TITB.2010.2041553.
  • Gao, D., Li, P., Wang, M., Liang, Y., Liu, S., Zhou, J., Wang, L., & Zhang, Y. (2023). CSF-GTNet: A novel multi-dimensional feature fusion network based on Convnext-GeLU-BiLSTM for EEG-signals-enabled fatigue driving detection. IEEE Journal of Biomedical and Health Informatics..
  • Guo, Y., Zhou, D., Li, P., Li, C., & Cao, J. (2022). Context-aware poly (A) signal prediction model via deep spatial–temporal neural networks. IEEE Transactions on Neural Networks and Learning Systems.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.
  • Jia, Z., Lin, Y., Cai, X., Chen, H., Gou, H., & Gou, H. (2020). SST-emotionnet: Spatial-spectral-temporal based attention 3D dense network for EEG emotion recognition. In Proceedings of the 28th ACM International conference on multimedia (pp. 2909–2917).
  • Jung, T. P., & Sejnowski, T. J. (2019). Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing. IEEE Transactions on Affective Computing, 13(1), 96–107.
  • Li, J., Zhang, Z., & He, H. (2018). Hierarchical convolutional neural networks for EEG-based emotion recognition. Cognitive Computation, 10(2), 368–380. https://doi.org/10.1007/s12559-017-9533-x
  • Li, P., Zhang, Y., Liu, S., Lin, L., Zhang, H., Tang, T., & Gao, D. (2023a). An EEG-based brain cognitive dynamic recognition network for representations of brain fatigue. Applied Soft Computing, 146, 110613. https://doi.org/10.1016/j.asoc.2023.110613
  • Li, W., Guo, Y., Wang, B., & Yang, B. (2023b). Learning spatiotemporal embedding with gated convolutional recurrent networks for translation initiation site prediction. Pattern Recognition, 136, 109234. https://doi.org/10.1016/j.patcog.2022.109234
  • Li, Y., Wang, L., Zheng, W., Zong, Y., Qi, L., Cui, Z., Zhang, T., & Song, T. (2020). A novel bi-hemispheric discrepancy model for EEG emotion recognition. IEEE Transactions on Cognitive and Developmental Systems, 13(2), 354–367. https://doi.org/10.1109/TCDS.2020.2999337
  • Li, Y., Zheng, W., Wang, L., Zong, Y., & Cui, Z. (2019). From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition. IEEE Transactions on Affective Computing.
  • Lian, Z., Li, Y., Tao, J., & Huang, J. (2018). Investigation of multimodal features, classifiers and fusion methods for emotion recognition. arXiv preprint arXiv:1809.06225.
  • Lin, L., Li, P., Wang, Q., Bai, B., Cui, R., Yu, Z., Gao, D., & Zhang, Y. (2023). An EEG-based cross-subject interpretable CNN for game player expertise level classification. Expert Systems with Applications, 121658.
  • Lin, Y. P., Wang, C. H., Jung, T. P., Wu, T.-L., Jeng, S.-K., Duann, J.-R., & Chen, J.-H. (2010). EEG-based emotion recognition in music listening. IEEE Transactions on Biomedical Engineering, 57(7), 1798–1806. https://doi.org/10.1109/TBME.2010.2048568
  • Liu, Y., & Sourina, O. (2013). Real-time fractal-based valence level recognition from EEG. In Transactions on computational science XVIII (pp. 101–120). Springer.
  • Mühl, C., Allison, B., Nijholt, A., & Chanel, G. (2014). A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges. Brain-Computer Interfaces, 1(2), 66–84. https://doi.org/10.1080/2326263X.2014.912881
  • Rouast, P. V., Adam, M. T. P., & Chiong, R. (2019). Deep learning for human affect recognition: Insights and new developments. IEEE Transactions on Affective Computing, 12(2), 524–543. https://doi.org/10.1109/TAFFC.2018.2890471
  • Roy, A. G., Navab, N., & Wachinger, C. (2018). Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In International conference on medical image computing and computer-assisted intervention (pp. 421–429). Springer.
  • Song, T., Zheng, W., Song, P., & Cui, Z. (2018). EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Transactions on Affective Computing, 11(3), 532–541. https://doi.org/10.1109/TAFFC.2018.2817622
  • Yang, S., Zhou, D., Cao, J., & Guo, Y. (2022). Rethinking low-light enhancement via transformer-GAN. IEEE Signal Processing Letters, 29, 1082–1086. https://doi.org/10.1109/LSP.2022.3167331
  • Yang, S., Zhou, D., Cao, J., & Guo, Y. (2023). LightingNet: An integrated learning method for low-light image enhancement. IEEE Transactions on Computational Imaging, 9, 29–42. https://doi.org/10.1109/TCI.2023.3240087
  • Yang, Y., Wu, Q., Fu, Y., & Chen, X. (2018). Continuous convolutional neural network with 3D input for EEG-based emotion recognition. In International conference on neural information processing (pp. 433–443). Springer.
  • Yin, Z., Liu, L., Chen, J., Zhao, B., & Wang, Y. (2020). Locally robust EEG feature selection for individual-independent emotion recognition. Expert Systems with Applications, 162, 113768. https://doi.org/10.1016/j.eswa.2020.113768
  • Zhang, T., Wang, X., Xu, X., & Chen, C. L. P. (2019). GCB-Net: Graph convolutional broad network and its application in emotion recognition. IEEE Transactions on Affective Computing, 13(1), 379–388. https://doi.org/10.1109/TAFFC.2019.2937768
  • Zheng, W. L., & Lu, B. L. (2015). Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Transactions on autonomous mental development, 7(3), 162–175. https://doi.org/10.1109/TAMD.2015.2431497
  • Zheng, W. L., Zhu, J. Y., & Lu, B. L. (2017). Identifying stable patterns over time for emotion recognition from EEG. IEEE Transactions on Affective Computing, 10(3), 417–429. https://doi.org/10.1109/TAFFC.2017.2712143
  • Zhong, P., Wang, D., & Miao, C. (2020). EEG-based emotion recognition using regularized graph neural networks. IEEE Transactions on Affective Computing.