347
Views
0
CrossRef citations to date
0
Altmetric
Research Article

TSCAPE: time series clustering with curve analysis and projection on an Euclidean space

, ORCID Icon, &
Article: 2312119 | Received 14 Aug 2023, Accepted 25 Jan 2024, Published online: 14 Feb 2024

References

  • Abbasimehr, H., & Bahrini, A. (2022). An analytical framework based on the recency, frequency, and monetary model and time series clustering techniques for dynamic segmentation. Expert Systems with Applications, 192, 116373. https://doi.org/10.1016/j.eswa.2021.116373
  • Agarwal, P. K., & Mustafa, N. H. (2004). K-means projective clustering. In Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS '04 (pp. 155–165). Association for Computing Machinery.
  • An, S., Bhat, G., Gumussoy, S., & Ogras, U. (2023). Transfer learning for human activity recognition using representational analysis of neural networks. ACM Transactions on Computing for Healthcare, 4(1), 1–21. https://doi.org/10.1145/3563948
  • Andreella, A., De Santis, R., Vesely, A., & Finos, L.. (2023). Procrustes-based distances for exploring between-matrices similarity. Statistical Methods & Applications, 32, 867–882. https://doi.org/10.1007/s10260-023-00689-y
  • Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. (1999). Optics: Ordering points to identify the clustering structure. ACM Sigmod Record, 28(2), 49–60. https://doi.org/10.1145/304181.304187
  • Batista, G. E., Keogh, E. J., Tataw, O. M., & De Souza, V. M. (2014). CID: An efficient complexity-invariant distance for time series. Data Mining and Knowledge Discovery, 28(3), 634–669. https://doi.org/10.1007/s10618-013-0312-3
  • Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I. W., Ng, L. G., Ginhoux, F., & Newell, E. W. (2019). Dimensionality reduction for visualizing single-cell data using UMAP. Nature Biotechnology, 37(1), 38–44. https://doi.org/10.1038/nbt.4314
  • Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396. https://doi.org/10.1162/089976603321780317
  • Brown, J. C., Hodgins-Davis, A., & Miller, P. J. O. (2006). Classification of vocalizations of killer whales using dynamic time warping. The Journal of the Acoustical Society of America, 119(3), EL34–EL40. https://doi.org/10.1121/1.2166949
  • Chen, L., & Ng, R. (2004). On the marriage of Lp-norms and edit distance. In Proceedings of the Thirtieth international conference on Very large data bases (Vol. 30, pp. 792–803).
  • Cox, M. A. A., & Cox, T. F. (2008). Multidimensional scaling (pp. 315–347). Springer.
  • Cuturi, M., & Blondel, M. (2017). Soft-DTW: A differentiable loss function for time-series. In Precup, D. and Teh, Y. W., (Eds), Proceedings of the 34th international conference on machine learning, volume 70 of proceedings of machine learning research (pp. 894–903). PMLR.
  • Day, W. H., & Edelsbrunner, H. (1984). Efficient algorithms for agglomerative hierarchical clustering methods. Journal of Classification, 1(1), 7–24. https://doi.org/10.1007/BF01890115
  • Derpanis, K. G. (2005). Mean shift clustering. Lecture Notes, 32, 1–4. http://www.cse.yorku.ca/~kosta/CompVis_Notes/mean_shift.pdf
  • Ding, C. S. (2000). Profile analysis: Multidimensional scaling approach. Practical Assessment, Research, and Evaluation, 7(1), 16.
  • Ejegwa, P. A., & Agbetayo, J. M. (2023). Similarity-distance decision-making technique and its applications via intuitionistic fuzzy pairs. Journal of Computational and Cognitive Engineering, 2(1), 68–74.
  • Elmore, K. L., & Richman, M. B. (2001). Euclidean distance as a similarity metric for principal component analysis. Monthly Weather Review, 129(3), 540–549. https://doi.org/10.1175/1520-0493(2001)129<0540:EDAASM>2.0.CO;2
  • Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD (Vol. 96, pp. 226–231).
  • Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315(5814), 972–976. https://doi.org/10.1126/science.1136800
  • Golay, X., Kollias, S., Stoll, G., Meier, D., Valavanis, A., & Boesiger, P. (1998). A new correlation-based fuzzy logic clustering algorithm for fMRI. Magnetic Resonance in Medicine, 40(2), 249–260. https://doi.org/10.1002/mrm.v40:2
  • Hittmeir, M., Mayer, R., & Ekelhart, A. (2022). Distance-based techniques for personal microbiome identification. In Proceedings of the 17th international conference on availability, reliability and security (pp. 1–13).
  • Holdings, H. (2019). House property sales time series. Data retrieved from Kaggle. https://www.kaggle.com/datasets/htagholdings/property-sales?resource=download.
  • Jancovic, P., Köküer, M., Zakeri, M., & Russell, M. (2013). Unsupervised discovery of acoustic patterns in bird vocalisations employing dtw and clustering. In 21st European signal processing conference (EUSIPCO 2013) (pp. 1–5).
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202
  • Kalpakis, K., Gada, D., & Puttagunta, V. (2001). Distance measures for effective clustering of ARIMA time-series. In Proceedings 2001 IEEE international conference on data mining (pp. 273–280). IEEE.
  • Kamalzadeh, H., Ahmadi, A., & Mansour, S. (2020). Clustering time-series by a novel slope-based similarity measure considering particle swarm optimization. Applied Soft Computing, 96, 106701. https://doi.org/10.1016/j.asoc.2020.106701
  • Lee, Y., & Park, S. (2023). Spectral clustering of weighted variables on multi-omics data. The Korean Journal of Applied Statistics, 36(3), 175–196. https://doi.org/10.5351/KJAS.2023.36.3.175
  • Li, H. (2019). Multivariate time series clustering based on common principal component analysis. Neurocomputing, 349, 239–247. https://doi.org/10.1016/j.neucom.2019.03.060
  • Liao, T. W. (2005). Clustering of time series data–a survey. Pattern Recognition, 38(11), 1857–1874. https://doi.org/10.1016/j.patcog.2005.01.025
  • Liu, B., Liu, C., Zhou, Y., Wang, D., & Dun, Y. (2023). An unsupervised chatter detection method based on AE and merging GMM and k-means. Mechanical Systems and Signal Processing, 186, 109861. https://doi.org/10.1016/j.ymssp.2022.109861
  • Lopes, A. M., Andrade, J. P., & Tenreiro Machado, J. (2016). Multidimensional scaling analysis of virus diseases. Computer Methods and Programs in Biomedicine, 131, 97–110. https://doi.org/10.1016/j.cmpb.2016.03.029
  • Malzer, C., & Baum, M. (2020). A hybrid approach to hierarchical density-based cluster selection. In 2020 IEEE international conference on multisensor fusion and integration for intelligent systems (MFI) (pp. 223–228).
  • Mar-Molinero, C., & Serrano-Cinca, C. (2001). Bank failure: A multidimensional scaling approach. The European Journal of Finance, 7(2), 165–183. https://doi.org/10.1080/13518470122202
  • Mohammadi, Y., Miraftabzadeh, S. M., Bollen, M. H., & Longo, M. (2022). An unsupervised learning schema for seeking patterns in RMS voltage variations at the sub-10-minute time scale. Sustainable Energy, Grids and Networks, 31, 100773. https://doi.org/10.1016/j.segan.2022.100773
  • Neophytou, E., & Molinero, C. M. (2004). Predicting corporate failure in the UK: A multidimensional scaling approach. Journal of Business Finance & Accounting, 31(5-6), 677–710. https://doi.org/10.1111/jbfa.2004.31.issue-5-6
  • Ng, A., Jordan, M., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems, 14.
  • Petitjean, F., Ketterlin, A., & Gançarski, P. (2011). A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognition, 44(3), 678–693. https://doi.org/10.1016/j.patcog.2010.09.013
  • Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326. https://doi.org/10.1126/science.290.5500.2323
  • Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43–49. https://doi.org/10.1109/TASSP.1978.1163055
  • Shaw, C., & King, G. (1992). Using cluster analysis to classify time series. Physica D: Nonlinear Phenomena, 58(1-4), 288–298. https://doi.org/10.1016/0167-2789(92)90117-6
  • Singhal, A., & Seborg, D. E. (2005). Clustering multivariate time-series data. Journal of Chemometrics: A Journal of the Chemometrics Society, 19(8), 427–438. https://doi.org/10.1002/cem.v19:8
  • Szrlee. (2018). DJIA 30 stock time series. Data retrieved from Kaggle. https://www.kaggle.com/datasets/szrlee/stock-time-series-20050101-to-20171231?resource=download.
  • Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R., Rußwurm, M., Kolar, K., & Woods, E. (2020). Tslearn, a machine learning toolkit for time series data. Journal of Machine Learning Research, 21(118), 1–6.
  • Tenenbaum, J. B., Silva, V. d., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. https://doi.org/10.1126/science.290.5500.2319
  • Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11), 0–0.
  • Vlachos, M., Kollios, G., & Gunopulos, D. (2002). Discovering similar multidimensional trajectories. In Proceedings 18th international conference on data engineering (pp. 673–684). IEEE.
  • Yang, K., & Shahabi, C. (2004). A PCA-based similarity measure for multivariate time series. In Proceedings of the 2nd ACM international workshop on multimedia databases (pp. 65–74).
  • You, L., Jiang, H., Hu, J., Chang, C. H., Chen, L., Cui, X., & Zhao, M. (2022). GPU-accelerated faster mean shift with euclidean distance metrics. In 2022 IEEE 46th annual computers, software, and applications conference (COMPSAC) (pp. 211–216). IEEE.
  • Zhang, T., Ramakrishnan, R., & Livny, M. (1996). Birch: An efficient data clustering method for very large databases. ACM Sigmod Record, 25(2), 103–114. https://doi.org/10.1145/235968.233324