536
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Estimating electricity consumption at city-level through advanced machine learning methods

, , , , &
Article: 2313852 | Received 23 Oct 2023, Accepted 30 Jan 2024, Published online: 09 Feb 2024

References

  • Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Rajendra Acharya, U., Makarenkov, V., & Nahavandi, S. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76, 243–297. https://doi.org/10.1016/j.inffus.2021.05.008
  • Ahmad, T., Zhang, H., & Yan, B. (2020). A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustainable Cities and Society, 55, 102052. https://doi.org/10.1016/j.scs.2020.102052
  • Almihat, M. G. M., Kahn, M. T. E., Aboalez, K., & Almaktoof, A. M. (2022). Energy and sustainable development in smart cities: An overview. Smart Cities, 5(4), 1389–1408. https://doi.org/10.3390/smartcities5040071
  • Andrae, A. S. (2020). New perspectives on internet electricity use in 2030. Engineering and Applied Science Letters, 3(2), 19–31.
  • Atoofian, E., Shaikh, Z., & Jannesari, A. (2021). Reducing energy in GPGPUs through approximate trivial bypassing. ACM Transactions on Embedded Computing Systems, 20(2), 1–27. https://doi.org/10.1145/3429440
  • Bachici, M.-A., & Gellert, A. (2020). Modeling electricity consumption and production in smart homes using LSTM networks. International Journal of Advanced Statistics and IT&C for Economics and Life Sciences, 10(1), 80–89. https://doi.org/10.2478/ijasitels-2020-0009
  • Baloglu, U. B., & Demir, Y. (2018). An agent-based pythagorean fuzzy approach for demand analysis with incomplete information. International Journal of Intelligent Systems, 33(5), 983–997. https://doi.org/10.1002/int.21908
  • Bedi, G., Venayagamoorthy, G. K., & Singh, R. (2020). Development of an IoT-driven building environment for prediction of electric energy consumption. IEEE Internet of Things Journal, 7(6), 4912–4921. https://doi.org/10.1109/JIOT.2020.2975847
  • Bourdeau, M., Zhai, X., Nefzaoui, E., Guo, X., & Chateller, P. (2019). Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society, 48, 101533. https://doi.org/10.1016/j.scs.2019.101533
  • Cai, M., Pipattanasomporn, M., & Rahman, S. (2019). Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques. Applied Energy, 236, 1078–1088. https://doi.org/10.1016/j.apenergy.2018.12.042
  • Dab, K., Agbossou, K., Henao, N., Dubé, Y., Kelouwani, S., & Hosseini, S. S. (2022). A compositional kernel based Gaussian process approach to day-ahead residential load forecasting. Energy and Buildings, 254, 111459. https://doi.org/10.1016/j.enbuild.2021.111459
  • Ding, Y., Fan, L., & Liu, X. (2021). Analysis of feature matrix in machine learning algorithms to predict energy consumption of public buildings. Energy and Buildings, 249, 111208. https://doi.org/10.1016/j.enbuild.2021.111208
  • Ding, Z. K., Fu, Q. M., Chen, J. P., Wu, H. J., Lu, Y., & Hu, F. Y. (2022). Energy-efficient control of thermal comfort in multi-zone residential HVAC via reinforcement learning. Connection Science, 34(1), 2364–2394. https://doi.org/10.1080/09540091.2022.2120598
  • Dong, Z., Liu, J., Liu, B., Li, K., & Li, X. (2021). Hourly energy consumption prediction of an office building based on ensemble learning and energy consumption pattern classification. Energy and Buildings, 241, 110929. https://doi.org/10.1016/j.enbuild.2021.110929
  • Escrivá-Escrivá, G., Álvarez-Bel, C., Roldán-Blay, C., & Alcázar-Ortega, M. (2011). New artificial neural network prediction method for electrical consumption forecasting based on building end-uses. Energy and Buildings, 43(11), 3112–3119. https://doi.org/10.1016/j.enbuild.2011.08.008
  • Falaki, F., Merabtine, A., & Martouzet, D. (2021). A Spatio-Temporal Analysis of electric appliance end-use demand in the residential sector: Case study of Tours (France). Sustainable Cities and Society, 65, 102635. https://doi.org/10.1016/j.scs.2020.102635
  • Feilmeier, S. (2015). Loads management based on photovoltaic and energy storage system, MSc thesis. Lucian Blaga University of Sibiu.
  • Fu, L., Ding, X., & Ding, Y. (2022). Ensemble empirical mode decomposition-based preprocessing method with Multi-LSTM for time series forecasting: a case study for hog prices. Connection Science, 34(1), 2177–2200. https://doi.org/10.1080/09540091.2022.2111404
  • Fumo, N., & Biswas, M. A. R. (2015). Regression analysis for prediction of residential energy consumption. Renewable and Sustainable Energy Reviews, 47, 332–343. https://doi.org/10.1016/j.rser.2015.03.035
  • Gellert, A. (2023). Prediction-Based modeling and estimation in advanced computing systems, habilitation thesis. Lucian Blaga University of Sibiu.
  • Gellert, A., Fiore, U., Florea, A., Chis, R., & Palmieri, F. (2022). Forecasting electricity consumption and production in smart homes through statistical methods. Sustainable Cities and Society, 76, 103426. https://doi.org/10.1016/j.scs.2021.103426
  • Gellert, A., & Florea, A. (2013). Investigating a New design pattern for efficient implementation of prediction algorithms. Journal of Digital Information Management, 11(5), 366–377.
  • Gellert, A., Florea, A., Fiore, U., Palmieri, F., & Zanetti, P. (2019). A study on forecasting electricity production and consumption in smart cities and factories. International Journal of Information Management, 49, 546–556. https://doi.org/10.1016/j.ijinfomgt.2019.01.006
  • Ghimire, S., Deo, R. C., Casillas-Pérez, D., & Salcedo-Sanz, S. (2023). Efficient daily electricity demand prediction with hybrid deep-learning multi-algorithm approach. Energy Conversion and Management, 297, 117707. https://doi.org/10.1016/j.enconman.2023.117707
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
  • Ilbeigi, M., Ghomeishi, M., & Dehghanbanadaki, A. (2020). Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm. Sustainable Cities and Society, 61, 102325. https://doi.org/10.1016/j.scs.2020.102325
  • International Energy Agency. (2015). Accelerating energy efficiency in small and medium-sized enterprises. Retrieved January 02, 2024, from https://c2e2.unepccc.org/wp-content/uploads/sites/3/2016/03/sme-2015.pdf.
  • Kim, M. K., Kim, Y. S., & Srebric, J. (2020). Predictions of electricity consumption in a campus building using occupant rates and weather elements with sensitivity analysis: Artificial neural network vs. linear regression. Sustainable Cities and Society, 62, 102385. https://doi.org/10.1016/j.scs.2020.102385
  • Kim, T.-Y., & Cho, S.-B. (2019). Predicting residential energy consumption using CNN-LSTM neural networks. Energy, 182, 72–81. https://doi.org/10.1016/j.energy.2019.05.230
  • Lazzari, F., Mor, G., Cipriano, J., Gabaldon, E., Grillone, B., Chemisana, D., & Solsona, F. (2022). User behaviour models to forecast electricity consumption of residential customers based on smart metering data. Energy Reports, 8, 3680–3691. https://doi.org/10.1016/j.egyr.2022.02.260
  • Le, T., Vo, M. T., Vo, B., Hwang, E., Rho, S., & Baik, S. W. (2019). Improving electric energy consumption prediction using CNN and Bi-LSTM. Applied Sciences, 9(20), 4237. https://doi.org/10.3390/app9204237
  • Lee, M. H. L., Ser, Y. C., Selvachandran, G., Thong, P. H., Cuong, L., Son, L. H., Tuan, N. T., & Gerogiannis, V. C. (2022). A comparative study of forecasting electricity consumption using machine learning models. Mathematics, 10(8), 1329. https://doi.org/10.3390/math10081329
  • Lei, L., Chen, W., Wu, B., Chen, C., & Liu, W. (2021). A building energy consumption prediction model based on rough set theory and deep learning algorithms. Energy and Buildings, 240, 110886. https://doi.org/10.1016/j.enbuild.2021.110886
  • Li, K., Tian, J., Xue, W., & Tan, G. (2021). Short-term electricity consumption prediction for buildings using data-driven swarm intelligence based ensemble model. Energy and Buildings, 231, 110558. https://doi.org/10.1016/j.enbuild.2020.110558
  • Mendel, J. M. (1995). Fuzzy logic systems for engineering: a tutorial. Proceedings of the IEEE, 83(3), 345–377. https://doi.org/10.1109/5.364485
  • Mohammed, A., Alshibani, A., Alshamrani, O., & Hassanain, M. (2021). A regression-based model for estimating the energy consumption of school facilities in Saudi Arabia. Energy and Buildings, 237, 110809. https://doi.org/10.1016/j.enbuild.2021.110809
  • Montevecchi, F., Stickler, T., Hintemann, R., & Hinterholzer, S. (2020). Energy-efficient cloud computing technologies and policies for an Eco-friendly cloud market. Final Study Report. Vienna.
  • Olaru, L., Gellert, A., Fiore, U., & Palmieri, F. (2022). Electricity production and consumption modeling through fuzzy logic. International Journal of Intelligent Systems, 37(11), 8348–8364. https://doi.org/10.1002/int.22942
  • Porteiro, R., Hernández-Callejo, L., & Nesmachnow, S. (2022). Electricity demand forecasting in industrial and residential facilities using ensemble machine learning. Revista Facultad de Ingeniería Universidad de Antioquia, 102, 9–25.
  • Reddy, G. V., Aitha, L. J., Poojitha, C., Shreya, A. N., Reddy, D. K., & Meghana, G. S. (2023). Electricity consumption prediction using machine learning, 4th international conference on design and manufacturing aspects for sustainable energy, Hyderabad, India, May 2023.
  • Rosas, M. A. T., Pérez, M. R., & Martínez Pérez, E. R. (2022). Itineraries for charging and discharging a BESS using energy predictions based on a CNN-LSTM neural network model in BCS, Mexico. Renewable Energy, 188, 1141–1165. https://doi.org/10.1016/j.renene.2022.02.047
  • Sbailò, L., & Ghiringhelli, L. M. (2023). Uncertainty quantification in deep neural networks through statistical inference on latent space. arXiv preprint arXiv:2305.10840.
  • Shao, M., Wang, X., Bu, Z., Chen, X., & Wang, Y. (2020). Prediction of energy consumption in hotel buildings via support vector machines. Sustainable Cities and Society, 57, 102128. https://doi.org/10.1016/j.scs.2020.102128
  • Skomski, E., Lee, J.-Y., Kim, W., Chandan, V., Katipamula, S., & Hutchinson, B. (2020). Sequence-to- sequence neural networks for short-term electrical load forecasting in commercial office buildings. Energy and Buildings, 226, 110350.
  • Stingl, C., Hopf, K., & Staake, T. (2018). Explaining and predicting annual electricity demand of enterprises – A case study from Switzerland. Energy Informatics, 1(S1), 149–166. https://doi.org/10.1186/s42162-018-0028-0
  • Trianni, A., & Cagno, E. (2011). Energy efficiency barriers in industrial operations: evidence from the Italian SMEs manufacturing industry. Energy Productivity in Industry: Partners and Opportunities, 12, 189–200.
  • Trombley, D. (2014). One small step for energy efficiency: Targeting small and medium-sized manufacturers. American Council for an Energy Efficient Economy.
  • Walter, I., & Gomide, F. (2007). Genetic fuzzy systems to evolve interaction strategies in multiagent systems. International Journal of Intelligent Systems, 22(9), 971–991. https://doi.org/10.1002/int.20234
  • Wang, L.-X., & Mendel, J. M. (1992). Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics, 22(6), 1414–1427. https://doi.org/10.1109/21.199466
  • Wang, Z., Hong, T., Li, H., & Piette, M. A. (2021). Predicting city-scale daily electricity consumption using data-driven models. Advances in Applied Energy, 2, 100025. https://doi.org/10.1016/j.adapen.2021.100025
  • Wu, H., Wang, F., Mei, X., Liang, L., Han, B., Han, D., Weng, T. H., & Li, K. C. (2023a). A novel fuzzy control path planning algorithm for intelligent ship based on scale factors. The Journal of Supercomputing, 1–24.
  • Wu, J., Hu, J., Chen, S., Xu, W., Tang, B., & Wen, X. (2023b). Demand-side adjustable resources unified data model study. Journal of Computational Methods in Sciences and Engineering, 23(5), 2275–2289. https://doi.org/10.3233/JCM-226944
  • Zadeh, L. A. (2008). Is there a need for fuzzy logic? Information Sciences, 178(13), 2751–2779. https://doi.org/10.1016/j.ins.2008.02.012
  • Zhang, C., Li, J., Zhao, Y., Li, T., Chen, Q., & Zhang, X. (2020). A hybrid deep learning-based method for short-term building energy load prediction combined with an interpretation process. Energy and Buildings, 225, 110301. https://doi.org/10.1016/j.enbuild.2020.110301
  • Zhou, F., Wang, Z., Zhong, T., Trajcevski, G., & Khokhar, A. (2022). HydroFlow: Towards probabilistic electricity demand prediction using variational autoregressive models and normalizing flows. International Journal of Intelligent Systems, 37(10), 6833–6856.