5,093
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Ketamine for depression

ORCID Icon & ORCID Icon
Pages 207-228 | Received 15 Jul 2020, Accepted 18 Nov 2020, Published online: 11 Feb 2021

References

  • Aan Het Rot, M., Collins, K. A., Murrough, J. W., Perez, A. M., Reich, D. L., Charney, D. S., & Mathew, S. J. (2010). Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biological Psychiatry, 67(2), 139–145. https://doi.org/10.1016/j.biopsych.2009.08.038
  • Abdallah, C. G., De Feyter, H. M., Averill, L. A., Jiang, L., Averill, C. L., Chowdhury, G. M. I., Purohit, P., de Graaf, R. A., Esterlis, I., Juchem, C., Pittman, B. P., Krystal, J. H., Rothman, D. L., Sanacora, G., & Mason, G. F. (2018). The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology, 43(10), 2154–2160. https://doi.org/10.1038/s41386-018-0136-3
  • Acevedo-Diaz, E. E., Cavanaugh, G. W., Greenstein, D., Kraus, C., Kadriu, B., Zarate, C. A., & Park, L. T. (2020). Comprehensive assessment of side effects associated with a single dose of ketamine in treatment-resistant depression. Journal of Affective Disorders, 263, 568–575. https://doi.org/10.1016/j.jad.2019.11.028
  • Al-Harbi, K. S. (2012). Treatment-resistant depression: Therapeutic trends, challenges, and future directions. Patient Preference and Adherence, 6, 369–388. https://doi.org/10.2147/PPA.S29716
  • Arabzadeh, S., Hakkikazazi, E., Shahmansouri, N., Tafakhori, A., Ghajar, A., Jafarinia, M., & Akhondzadeh, S. (2018). Does oral administration of ketamine accelerate response to treatment in major depressive disorder? Results of a double-blind controlled trial. Journal of Affective Disorders, 235, 236–241. https://doi.org/10.1016/j.jad.2018.02.056
  • Autry, A. E., Adachi, M., Nosyreva, E., Na, E. S., Los, M. F., Cheng, P-f., Kavalali, E. T., & Monteggia, L. M. (2011). NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature, 475(7354), 91–95. https://doi.org/10.1038/nature10130
  • Berman, R. M., Cappiello, A., Anand, A., Oren, D. A., Heninger, G. R., Charney, D. S., & Krystal, J. H. (2000). Antidepressant effects of ketamine in depressed patients. Biological Psychiatry, 47(4), 351–354. https://doi.org/10.1016/s0006-3223(99)00230-9
  • Beurel, E., Song, L., & Jope, R. S. (2011). Inhibition of glycogen synthase kinase-3 is necessary for the rapid antidepressant effect of ketamine in mice. Molecular Psychiatry, 16(11), 1068–1070. https://doi.org/10.1038/mp.2011.47
  • Bokor, G., & Anderson, P. D. (2014). Ketamine: An update on its abuse. Journal of Pharmacy Practice, 27(6), 582–586. https://doi.org/10.1177/0897190014525754
  • Canuso, C. M., Singh, J. B., Fedgchin, M., Alphs, L., Lane, R., Lim, P., Pinter, C., Hough, D., Sanacora, G., Manji, H., & Drevets, W. C. (2018). Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: results of a double-blind, randomized, placebo-controlled study. The American Journal of Psychiatry, 175(7), 620–630. https://doi.org/10.1176/appi.ajp.2018.17060720
  • Cao, Z., Lin, C., & Ding, W. (2018). Identifying ketamine responses in treatment-resistant depression using a wearable forehead EEG. IEEE Transactions on Biomedical Engineering, 66(6), 1668–1679.
  • Chaki, S., & Fukumoto, K. (2019). Role of serotonergic system in the antidepressant actions of mGlu2/3 receptor antagonists: Similarity to ketamine. International Journal of Molecular Sciences, 20(6), 1270. https://doi.org/10.3390/ijms20061270
  • Chartoff, E. H., & Connery, H. S. (2014). It’s MORe exciting than mu: Crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system. Frontiers in Pharmacology, 5, 116.
  • Chen, M.-H., Li, C.-T., Lin, W.-C., Hong, C.-J., Tu, P.-C., Bai, Y.-M., Cheng, C.-M., & Su, T.-P. (2018). Persistent antidepressant effect of low-dose ketamine and activation in the supplementary motor area and anterior cingulate cortex in treatment-resistant depression: A randomized control study. Journal of Affective Disorders, 225, 709–714. https://doi.org/10.1016/j.jad.2017.09.008
  • Chen, W. Y., Huang, M. C., & Lin, S. K. (2014). Gender differences in subjective discontinuation symptoms associated with ketamine use. Substance Abuse Treatment, Prevention, and Policy, 9, 39. https://doi.org/10.1186/1747-597X-9-39
  • Cho, H.-S., D’Souza, D. C., Gueorguieva, R., Perry, E. B., Madonick, S., Karper, L. P., Abi-Dargham, A., Belger, A., Abi-Saab, W., Lipschitz, D., Bennet, A., Seibyl, J. P., & Krystal, J. H. (2005). Absence of behavioral sensitization in healthy human subjects following repeated exposure to ketamine. Psychopharmacology, 179(1), 136–143. https://doi.org/10.1007/s00213-004-2066-5
  • Corssen, G., & Domino, E. F. (1966). Dissociative anesthesia: Further pharmacologic studies and first clinical experience with the phencyclidine derivative CI-581. Anesthesia and Analgesia, 45(1), 29–40.
  • Costi, S., Soleimani, L., Glasgow, A., Brallier, J., Spivack, J., Schwartz, J., Levitch, C. F., Richards, S., Hoch, M., Wade, E., Welch, A., Collins, K. A., Feder, A., Iosifescu, D. V., Charney, D. S., & Murrough, J. W. (2019). Lithium continuation therapy following ketamine in patients with treatment resistant unipolar depression: A randomized controlled trial. Neuropsychopharmacology, 44(10), 1812–1819. https://doi.org/10.1038/s41386-019-0365-0
  • Daly, E. J., Singh, J. B., Fedgchin, M., Cooper, K., Lim, P., Shelton, R. C., Thase, M. E., Winokur, A., Van Nueten, L., Manji, H., & Drevets, W. C. (2018). Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: A randomized clinical trial. JAMA Psychiatry, 75(2), 139–148. https://doi.org/10.1001/jamapsychiatry.2017.3739
  • Daly, E. J., Trivedi, M. H., Janik, A., Li, H., Zhang, Y., Li, X., Lane, R., Lim, P., Duca, A. R., Hough, D., Thase, M. E., Zajecka, J., Winokur, A., Divacka, I., Fagiolini, A., Cubala, W. J., Bitter, I., Blier, P., Shelton, R. C., … Singh, J. B. (2019). Efficacy of esketamine nasal spray plus oral antidepressant treatment for relapse prevention in patients with treatment-resistant depression: A randomized clinical trial. JAMA Psychiatry, 76(9), 893. https://doi.org/10.1001/jamapsychiatry.2019.1189
  • Diazgranados, N., Ibrahim, L., Brutsche, N. E., Newberg, A., Kronstein, P., Khalife, S., Kammerer, W. A., Quezado, Z., Luckenbaugh, D. A., Salvadore, G., Machado-Vieira, R., Manji, H. K., & Zarate, C. A. (2010). A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Archives of General Psychiatry, 67(8), 793–802. https://doi.org/10.1001/archgenpsychiatry.2010.90
  • Domany, Y., Bleich-Cohen, M., Tarrasch, R., Meidan, R., Litvak-Lazar, O., Stoppleman, N., Schreiber, S., Bloch, M., Hendler, T., & Sharon, H. (2019). Repeated oral ketamine for out-patient treatment of resistant depression: Randomised, double-blind, placebo-controlled, proof-of-concept study. The British Journal of Psychiatry, 214(1), 20–26. https://doi.org/10.1192/bjp.2018.196
  • Domino, E. F. (1980). History and pharmacology of PCP and PCP-related analogs. Journal of Psychedelic Drugs, 12(3–4), 223–227. https://doi.org/10.1080/02791072.1980.10471430
  • Domino, E. F. (2010). Taming the ketamine tiger. 1965. Anesthesiology, 113(3), 678–684. https://doi.org/10.1097/ALN.0b013e3181ed09a2
  • Downey, D., Dutta, A., McKie, S., Dawson, G. R., Dourish, C. T., Craig, K., Smith, M. A., McCarthy, D. J., Harmer, C. J., Goodwin, G. M., Williams, S., & Deakin, J. F. W. (2016). Comparing the actions of lanicemine and ketamine in depression: Key role of the anterior cingulate. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 26(6), 994–1003. https://doi.org/10.1016/j.euroneuro.2016.03.006
  • Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59(12), 1116–1127. https://doi.org/10.1016/j.biopsych.2006.02.013
  • Duncan, W. C., Selter, J., Brutsche, N., Sarasso, S., & Zarate, C. A. (2013). Baseline delta sleep ratio predicts acute ketamine mood response in major depressive disorder. Journal of Affective Disorders, 145(1), 115–119. https://doi.org/10.1016/j.jad.2012.05.042
  • Ebert, B., Mikkelsen, S., Thorkildsen, C., & Borgbjerg, F. M. (1997). Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord. European Journal of Pharmacology, 333(1), 99–104. https://doi.org/10.1016/s0014-2999(97)01116-3
  • EMC. (2019). Spravato 28 mg nasal spray, solution. Summary of product characteristics. Medicines. https://www.medicines.org.uk/emc/product/10977/smpc
  • Fava, M., Freeman, M. P., Flynn, M., Judge, H., Hoeppner, B. B., Cusin, C., Ionescu, D. F., Mathew, S. J., Chang, L. C., Iosifescu, D. V., Murrough, J., Debattista, C., Schatzberg, A. F., Trivedi, M. H., Jha, M. K., Sanacora, G., Wilkinson, S. T., & Papakostas, G. I. (2020). Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Molecular Psychiatry, 25(7), 1592–1603. https://doi.org/10.1038/s41380-018-0256-5
  • FDA. (2019). Efficacy, safety, and risk-benefit profile of New Drug Application (NDA) 211243, esketamine 28 mg single-use nasal spray device, submitted by Janssen Pharmaceuticals, Inc., for the treatment of treatment-resistant depression. Federal Drug Administration.
  • Fedgchin, M., Trivedi, M., Daly, E. J., Melkote, R., Lane, R., Lim, P., Vitagliano, D., Blier, P., Fava, M., Liebowitz, M., Ravindran, A., Gaillard, R., Ameele, H. V. D., Preskorn, S., Manji, H., Hough, D., Drevets, W. C., & Singh, J. B. (2019). Efficacy and safety of fixed-dose esketamine nasal spray combined with a new oral antidepressant in treatment-resistant depression: Results of a randomized, double-blind, active-controlled study (TRANSFORM-1). The International Journal of Neuropsychopharmacology, 22(10), 616–630. https://doi.org/10.1093/ijnp/pyz039
  • Fontana, A. (1974). Terapia atidepresiva con ketamine. Acta Psiquiatrica y Psicologica de America Latina, 20, 32.
  • Fukumoto, K., Fogaça, M. V., Liu, R.-J., Duman, C., Kato, T., Li, X.-Y., & Duman, R. S. (2019). Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine. Proceedings of the National Academy of Sciences of the United States of America, 116(1), 297–302. https://doi.org/10.1073/pnas.1814709116
  • Fukumoto, K., Iijima, M., & Chaki, S. (2016). The antidepressant effects of an mGlu2/3 receptor antagonist and ketamine require AMPA receptor stimulation in the mPFC and subsequent activation of the 5-HT neurons in the DRN. Neuropsychopharmacology, 41(4), 1046–1056. https://doi.org/10.1038/npp.2015.233
  • Fukumoto, K., Iijima, M., Funakoshi, T., & Chaki, S. (2018). Role of 5-HT1A receptor stimulation in the medial prefrontal cortex in the sustained antidepressant effects of ketamine. The International Journal of Neuropsychopharmacology, 21(4), 371–381. https://doi.org/10.1093/ijnp/pyx116
  • Gálvez, V., Li, A., Huggins, C., Glue, P., Martin, D., Somogyi, A. A., Alonzo, A., Rodgers, A., Mitchell, P. B., & Loo, C. K. (2018). Repeated intranasal ketamine for treatment-resistant depression – the way to go? Results from a pilot randomised controlled trial. Journal of Psychopharmacology, 32(4), 397–407. https://doi.org/10.1177/0269881118760660
  • Gartner, M., Aust, S., & Bajbouj, M. (2019). Functional connectivity between prefrontal cortex and subgenual cingulate predicts antidepressant effects of ketamine. European Neuropsychopharmacology. 29(4), 501–508. https://doi.org/10.1016/j.euroneuro.2019.02.008
  • George, D., Gálvez, V., Martin, D., Kumar, D., Leyden, J., Hadzi-Pavlovic, D., Harper, S., Brodaty, H., Glue, P., Taylor, R., Mitchell, P. B., & Loo, C. K. (2017). Pilot randomized controlled trial of titrated subcutaneous ketamine in older patients with treatment-resistant depression. The American Journal of Geriatric Psychiatry, 25(11), 1199–1209. https://doi.org/10.1016/j.jagp.2017.06.007
  • Gerhard, D. M., Pothula, S., Liu, R.-J., Wu, M., Li, X.-Y., Girgenti, M. J., Taylor, S. R., Duman, C. H., Delpire, E., Picciotto, M., Wohleb, E. S., & Duman, R. S. (2020). GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. The Journal of Clinical Investigation, 130(3), 1336–1349. https://doi.org/10.1172/JCI130808
  • Gigliucci, V., O’Dowd, G., Casey, S., Egan, D., Gibney, S., & Harkin, A. (2013). Ketamine elicits sustained antidepressant-like activity via a serotonin-dependent mechanism. Psychopharmacology, 228(1), 157–166. https://doi.org/10.1007/s00213-013-3024-x
  • Gold, P. W., & Kadriu, B. (2019). A major role for the lateral habenula in depressive illness: Physiologic and molecular mechanisms. Frontiers in Psychiatry, 10:320. https://doi.org/10.3389/fpsyt.2019.00320
  • Gøtzsche, P. C., Hengartner, M. P., Davies, J. (2019). Rapid response: Re: Esketamine for treatment resistant depression. Esketamine for depression? No thanks, please. BMJ. https://www.bmj.com/content/366/bmj.l5572/rr-0
  • Grunebaum, M. F., Galfalvy, H. C., Choo, T.-H., Keilp, J. G., Moitra, V. K., Parris, M. S., Marver, J. E., Burke, A. K., Milak, M. S., Sublette, M. E., Oquendo, M. A., & Mann, J. J. (2018). Ketamine for rapid reduction of suicidal thoughts in major depression: A midazolam-controlled randomized clinical trial. The American Journal of Psychiatry, 175(4), 327–335. https://doi.org/10.1176/appi.ajp.2017.17060647
  • Hare, B. D., Shinohara, R., Liu, R. J., Pothula, S., DiLeone, R. J., & Duman, R. S. (2019). Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nature Communications, 10(1), 223. https://doi.org/10.1038/s41467-018-08168-9
  • Hashimoto, K. (2020). Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-ketamine. Biochemical Pharmacology, 177, 113935. https://doi.org/10.1016/j.bcp.2020.113935
  • Hashimoto, K., Shimizu, E., & Iyo, M. (2004). Critical role of brain-derived neurotrophic factor in mood disorders. Brain Research Reviews, 45(2), 104–114. https://doi.org/10.1016/j.brainresrev.2004.02.003
  • Homayoun, H., & Moghaddam, B. (2007). NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. The Journal of Neuroscience, 27(43), 11496–11500. https://doi.org/10.1523/JNEUROSCI.2213-07.2007
  • Hu, Y.-D., Xiang, Y.-T., Fang, J.-X., Zu, S., Sha, S., Shi, H., Ungvari, G. S., Correll, C. U., Chiu, H. F. K., Xue, Y., Tian, T.-F., Wu, A.-S., Ma, X., & Wang, G. (2016). Single i.v. ketamine augmentation of newly initiated escitalopram for major depression: Results from a randomized, placebo-controlled 4-week study. Psychological Medicine, 46(3), 623–635. https://doi.org/10.1017/S0033291715002159
  • Ignacio, Z. M., Réus, G. Z., Arent, C. O., Abelaira, H. M., Pitcher, M. R., & Quevedo, J. (2016) New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. British journal of clinical pharmacology, 82(5), 1280–1290.
  • Ionescu, D. F., Bentley, K. H., Eikermann, M., Taylor, N., Akeju, O., Swee, M. B., Pavone, K. J., Petrie, S. R., Dording, C., Mischoulon, D., Alpert, J. E., Brown, E. N., Baer, L., Nock, M. K., Fava, M., & Cusin, C. (2019). Repeat-dose ketamine augmentation for treatment-resistant depression with chronic suicidal ideation: A randomized, double blind, placebo controlled trial. Journal of Affective Disorders, 243, 516–524. https://doi.org/10.1016/j.jad.2018.09.037
  • Jelen, L. A., King, S., & Stone, J. M. (2018). Alternatives to ketamine in depression: State-of-the-art and future perspectives. Therapeutic Advances in Psychopharmacology, 8(3), 95–98. https://doi.org/10.1177/2045125317749456
  • Jelen, L. A., Young, A. H., & Stone, J. M. (2020). Ketamine: A tale of two enantiomers. Journal of Psychopharmacology. Advance online publication. https://doi.org/10.1177/0269881120959644
  • Jilka, S., Murray, C., Wieczorek, A., Griffiths, H., Wykes, T., & McShane, R. (2019). Exploring patients’ and carers’ views about the clinical use of ketamine to inform policy and practical decisions: Mixed-methods study. BJPsych Open, 5(5), e62. https://doi.org/10.1192/bjo.2019.52
  • Jones, J. L., Mateus, C. F., Malcolm, R. J., Brady, K. T., & Back, S. E. (2018). Efficacy of ketamine in the treatment of substance use disorders: A systematic review. Frontiers in Psychiatry, 9, 277. https://doi.org/10.3389/fpsyt.2018.00277
  • Ketamine-Clinics-Directory. (2020). Ketamine Clinics Directory. https://ketamineclinicsdirectory.com
  • Khorramzadeh, E., & Lotfy, A. O. (1973). The use of ketamine in psychiatry. Psychosomatics, 14(6), 344–346. https://doi.org/10.1016/S0033-3182(73)71306-2
  • Kishimoto, T., Chawla, J. M., Hagi, K., Zarate, C. A., Kane, J. M., Bauer, M., & Correll, C. U. (2016). Single-dose infusion ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists for unipolar and bipolar depression: A meta-analysis of efficacy, safety and time trajectories. Psychological Medicine, 46(7), 1459–1472. https://doi.org/10.1017/S0033291716000064
  • Klein, M. E., Chandra, J., Sheriff, S., & Malinow, R. (2020). Opioid system is necessary but not sufficient for antidepressive actions of ketamine in rodents. Proceedings of the National Academy of Sciences of the United States of America, 117(5), 2656–2662. https://doi.org/10.1073/pnas.1916570117
  • Koike, H., & Chaki, S. (2014). Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats. Behavioural Brain Research, 271, 111–115. https://doi.org/10.1016/j.bbr.2014.05.065
  • Koike, H., Iijima, M., & Chaki, S. (2011). Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behavioural Brain Research, 224(1), 107–111. https://doi.org/10.1016/j.bbr.2011.05.035
  • Kokkinou, M., Ashok, A. H., & Howes, O. D. (2018). The effects of ketamine on dopaminergic function: Meta-analysis and review of the implications for neuropsychiatric disorders. Molecular Psychiatry, 23(1), 59–69. https://doi.org/10.1038/mp.2017.190
  • Kolp, E., Young, M. S., Friedman, H., Krupitsky, E., Jansen, K., & O’Connor, L.-A. (2007). Ketamine-enhanced psychotherapy: Preliminary clinical observations on its effects in treating death anxiety. International Journal of Transpersonal Studies, 26(1), 1–17. https://doi.org/10.24972/ijts.2007.26.1.1
  • Kraus, C., Wasserman, D., Henter, I. D., Acevedo-Diaz, E., Kadriu, B., & Zarate, C. A. (2019). The influence of ketamine on drug discovery in depression. Drug Discovery Today, 24(10), 2033–2043. https://doi.org/10.1016/j.drudis.2019.07.007
  • Krupitsky, E. M., & Grinenko, A. Y. (1997). Ketamine psychedelic therapy (KPT): A review of the results of ten years of research. Journal of Psychoactive Drugs, 29(2), 165–183. https://doi.org/10.1080/02791072.1997.10400185
  • Kryst, J., Kawalec, P., & Pilc, A. (2020). Efficacy and safety of intranasal esketamine for the treatment of major depressive disorder. Expert Opinion on Pharmacotherapy, 21(1), 9–20. https://doi.org/10.1080/14656566.2019.1683161
  • Krystal, J. H., Abdallah, C. G., Sanacora, G., Charney, D. S., & Duman, R. S. (2019). Ketamine: A paradigm shift for depression research and treatment. Neuron, 101(5), 774–778. https://doi.org/10.1016/j.neuron.2019.02.005
  • Kurdi, M. S., Theerth, K. A., & Deva, R. S. (2014). Ketamine: Current applications in anesthesia, pain, and critical care. Anesthesia, Essays and Researches, 8(3), 283–290. https://doi.org/10.4103/0259-1162.143110
  • Laje, G., Lally, N., Mathews, D., Brutsche, N., Chemerinski, A., Akula, N., Kelmendi, B., Simen, A., McMahon, F. J., Sanacora, G., & Zarate, C. (2012). Brain-derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. Biological Psychiatry, 72(11), e27–e28. https://doi.org/10.1016/j.biopsych.2012.05.031
  • Lapidus, K. A. B., Levitch, C. F., Perez, A. M., Brallier, J. W., Parides, M. K., Soleimani, L., Feder, A., Iosifescu, D. V., Charney, D. S., & Murrough, J. W. (2014). A randomized controlled trial of intranasal ketamine in major depressive disorder. Biological Psychiatry, 76(12), 970–976. https://doi.org/10.1016/j.biopsych.2014.03.026
  • Leal, G. C., Bandeira, I. D., & Correia-Melo, F. S. (2020). Intravenous arketamine for treatment-resistant depression: Open-label pilot study. European Archives of Psychiatry and Clinical Neuroscience. Advance online publication. https://doi.org/10.1007/s00406-020-01110-5
  • Lener, M. S., Niciu, M. J., Ballard, E. D., Park, M., Park, L. T., Nugent, A. C., & Zarate, C. A. (2017). Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biological Psychiatry, 81(10), 886–897. https://doi.org/10.1016/j.biopsych.2016.05.005
  • Li, N., Lee, B., Liu, R.-J., Banasr, M., Dwyer, J. M., Iwata, M., Li, X.-Y., Aghajanian, G., & Duman, R. S. (2010). mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science, 329(5994), 959–964. https://doi.org/10.1126/science.1190287
  • Li, N., Liu, R.-J., Dwyer, J. M., Banasr, M., Lee, B., Son, H., Li, X.-Y., Aghajanian, G., & Duman, R. S. (2011). Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biological Psychiatry, 69(8), 754–761. https://doi.org/10.1016/j.biopsych.2010.12.015
  • Liu, R.-J., Fuchikami, M., Dwyer, J. M., Lepack, A. E., Duman, R. S., & Aghajanian, G. K. (2013). GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology, 38(11), 2268–2277. https://doi.org/10.1038/npp.2013.128
  • Loo, C. K., Gálvez, V., O’Keefe, E., Mitchell, P. B., Hadzi-Pavlovic, D., Leyden, J., Harper, S., Somogyi, A. A., Lai, R., Weickert, C. S., & Glue, P. (2016). Placebo-controlled pilot trial testing dose titration and intravenous, intramuscular and subcutaneous routes for ketamine in depression. Acta Psychiatrica Scandinavica, 134(1), 48–56. https://doi.org/10.1111/acps.12572
  • Maeng, S., Zarate, C. A., Du, J., Schloesser, R. J., McCammon, J., Chen, G., & Manji, H. K. (2008). Cellular mechanisms underlying the antidepressant effects of ketamine: Role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biological Psychiatry, 63(4), 349–352. https://doi.org/10.1016/j.biopsych.2007.05.028
  • Malinow, R., & Klein, M. E. (2020). Reply to Hashimoto: Ketamine is not an opioid but requires opioid system for antidepressant actions. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11202–11203. https://doi.org/10.1073/pnas.2002739117
  • McShane, R. (2019). A drug not a miracle—Why we need a new system for monitoring ketamine. BMJ. https://blogs.bmj.com/bmj/2019/07/26/rupert-mcshane-a-drug-not-a-miracle-why-we-need-a-new-system-for-monitoring-ketamine/
  • Mendoza, M. C., Er. E. E. & Blenis, J. (2011). The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends in biochemical sciences, 36(6), 320–328.
  • Milak, M. S., Proper, C. J., Mulhern, S. T., Parter, A. L., Kegeles, L. S., Ogden, R. T., Mao, X., Rodriguez, C. I., Oquendo, M. A., Suckow, R. F., Cooper, T. B., Keilp, J. G., Shungu, D. C., & Mann, J. J. (2016). A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder. Molecular Psychiatry, 21(3), 320–327. https://doi.org/10.1038/mp.2015.83
  • Moghaddam, B., Adams, B., Verma, A., & Daly, D. (1997). Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. The Journal of Neuroscience, 17(8), 2921–2927. https://doi.org/10.1523/JNEUROSCI.17-08-02921.1997
  • Monteggia, L. M., Gideons, E., & Kavalali, E. T. (2013). The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine. Biological Psychiatry, 73(12), 1199–1203. https://doi.org/10.1016/j.biopsych.2012.09.006
  • Morgan, C. J., & Curran, H. V. (2006). Acute and chronic effects of ketamine upon human memory: A review. Psychopharmacology, 188(4), 408–424. https://doi.org/10.1007/s00213-006-0572-3
  • Morgan, C. J., & Curran, H. V. (2012). Ketamine use: A review. Addiction, 107(1), 27–38. https://doi.org/10.1111/j.1360-0443.2011.03576.x
  • Muller, J., Pentyala, S., Dilger, J., & Pentyala, S. (2016). Ketamine enantiomers in the rapid and sustained antidepressant effects. Therapeutic Advances in Psychopharmacology, 6(3), 185–192. https://doi.org/10.1177/2045125316631267
  • Murrough, J. W., Burdick, K. E., Levitch, C. F., Perez, A. M., Brallier, J. W., Chang, L. C., Foulkes, A., Charney, D. S., Mathew, S. J., & Iosifescu, D. V. (2015). Neurocognitive effects of ketamine and association with antidepressant response in individuals with treatment-resistant depression: A randomized controlled trial. Neuropsychopharmacology, 40(5), 1084–1090. https://doi.org/10.1038/npp.2014.298
  • Murrough, J. W., Iosifescu, D. V., Chang, L. C., Al Jurdi, R. K., Green, C. E., Perez, A. M., Iqbal, S., Pillemer, S., Foulkes, A., Shah, A., Charney, D. S., & Mathew, S. J. (2013). Antidepressant efficacy of ketamine in treatment-resistant major depression: A two-site randomized controlled trial. The American Journal of Psychiatry, 170(10), 1134–1142. https://doi.org/10.1176/appi.ajp.2013.13030392
  • Murrough, J. W., Soleimani, L., DeWilde, K. E., Collins, K. A., Lapidus, K. A., Iacoviello, B. M., Lener, M., Kautz, M., Kim, J., Stern, J. B., Price, R. B., Perez, A. M., Brallier, J. W., Rodriguez, G. J., Goodman, W. K., Iosifescu, D. V., & Charney, D. S. (2015). Ketamine for rapid reduction of suicidal ideation: A randomized controlled trial. Psychological Medicine, 45(16), 3571–3580. https://doi.org/10.1017/S0033291715001506
  • Niciu, M. J., Luckenbaugh, D. A., Ionescu, D. F., Guevara, S., Machado-Vieira, R., Richards, E. M., Brutsche, N. E., Nolan, N. M., & Zarate, C. A. (2014). Clinical predictors of ketamine response in treatment-resistant major depression. The Journal of Clinical Psychiatry, 75(05), e417–e423. https://doi.org/10.4088/JCP.13m08698
  • Nugent, A. C., Ballard, E. D., Gould, T. D., Park, L. T., Moaddel, R., Brutsche, N. E., & Zarate, C. A. (2019). Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects. Molecular Psychiatry, 24(7), 1040–1052. https://doi.org/10.1038/s41380-018-0028-2
  • Ochs-Ross, R., Daly, E. J., Zhang, Y., Lane, R., Lim, P., Morrison, R. L., Hough, D., Manji, H., Drevets, W. C., Sanacora, G., Steffens, D. C., Adler, C., McShane, R., Gaillard, R., Wilkinson, S. T., & Singh, J. B. (2020). Efficacy and safety of esketamine nasal spray plus an oral antidepressant in elderly patients with treatment-resistant depression-TRANSFORM-3. The American Journal of Geriatric Psychiatry, 28(2), 121–141. https://doi.org/10.1016/j.jagp.2019.10.008
  • Peltoniemi, M. A., Hagelberg, N. M., Olkkola, K. T., & Saari, T. I. (2016). Ketamine: A review of clinical pharmacokinetics and pharmacodynamics in anesthesia and pain therapy. Clinical Pharmacokinetics, 55(9), 1059–1077. https://doi.org/10.1007/s40262-016-0383-6
  • Pham, T. H., Defaix, C., Xu, X., Deng, S.-X., Fabresse, N., Alvarez, J.-C., Landry, D. W., Brachman, R. A., Denny, C. A., & Gardier, A. M. (2018). Common neurotransmission recruited in (R,S)-ketamine and (2R,6R)-hydroxynorketamine-induced sustained antidepressant-like effects. Biological Psychiatry, 84(1), e3–e6. https://doi.org/10.1016/j.biopsych.2017.10.020
  • Pham, T. H., Mendez-David, I., Defaix, C., Guiard, B. P., Tritschler, L., David, D. J., & Gardier, A. M. (2017). Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJ mice. Neuropharmacology, 112(Pt A), 198–209. https://doi.org/10.1016/j.neuropharm.2016.05.010
  • Popova, V., Daly, E. J., Trivedi, M., Cooper, K., Lane, R., Lim, P., Mazzucco, C., Hough, D., Thase, M. E., Shelton, R. C., Molero, P., Vieta, E., Bajbouj, M., Manji, H., Drevets, W. C., & Singh, J. B. (2019). Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: A randomized double-blind active-controlled study. The American Journal of Psychiatry, 176(6), 428–438. https://doi.org/10.1176/appi.ajp.2019.19020172
  • Quevedo, K., Ng, R., Scott, H., Kodavaganti, S., Smyda, G., Diwadkar, V., & Phillips, M. (2017). Ventral striatum functional connectivity during rewards and losses and symptomatology in depressed patients. Biological Psychology, 123, 62–73. https://doi.org/10.1016/j.biopsycho.2016.11.004
  • Riva-Posse, P., Reiff, C. M., Edwards, J. A., Job, G. P., Galendez, G. C., Garlow, S. J., Saah, T. C., Dunlop, B. W., & McDonald, W. M. (2018). Blood pressure safety of subanesthetic ketamine for depression: A report on 684 infusions. Journal of Affective Disorders, 236, 291–297. https://doi.org/10.1016/j.jad.2018.02.025
  • Rodriguez-Munoz, M., Sanchez-Blazquez, P., & Vicente-Sanchez, A. (2012). The mu-opioid receptor and the NMDA receptor associate in PAG neurons: Implications in pain control. Neuropsychopharmacology, 37(2), 338–349. https://doi.org/10.1038/npp.2011.155
  • Rong, C., Park, C., & Rosenblat, J. D. (2018). Predictors of response to ketamine in treatment resistant major depressive disorder and bipolar disorder. International Journal of Environmental Research and Public Health, 15(4), 771. https://doi.org/10.3390/ijerph15040771
  • Salvadore, G., Cornwell, B. R., Colon-Rosario, V., Coppola, R., Grillon, C., Zarate, C. A., & Manji, H. K. (2009). Increased anterior cingulate cortical activity in response to fearful faces: A neurophysiological biomarker that predicts rapid antidepressant response to ketamine. Biological Psychiatry, 65(4), 289–295. https://doi.org/10.1016/j.biopsych.2008.08.014
  • Salvadore, G., van der Veen, J. W., Zhang, Y., Marenco, S., Machado-Vieira, R., Baumann, J., Ibrahim, L. A., Luckenbaugh, D. A., Shen, J., Drevets, W. C., & Zarate, C. A. (2012). An investigation of amino-acid neurotransmitters as potential predictors of clinical improvement to ketamine in depression. The International Journal of Neuropsychopharmacology, 15(08), 1063–1072. https://doi.org/10.1017/S1461145711001593
  • Sassano-Higgins, S., Baron, D., Juarez, G., Esmaili, N., & Gold, M. (2016). A review of ketamine abuse and diversion. Depression and Anxiety, 33(8), 718–727. https://doi.org/10.1002/da.22536
  • Schatzberg, A. F. (2014). A word to the wise about ketamine. The American Journal of Psychiatry, 171(3), 262–264. https://doi.org/10.1176/appi.ajp.2014.13101434
  • Shahani, R., Streutker, C., Dickson, B., & Stewart, R. J. (2007). Ketamine-associated ulcerative cystitis: A new clinical entity. Urology, 69(5), 810–812. https://doi.org/10.1016/j.urology.2007.01.038
  • Shirayama, Y., & Hashimoto, K. (2018). Lack of antidepressant effects of (2R,6R)-hydroxynorketamine in a rat learned helplessness model: Comparison with (R)-ketamine. The International Journal of Neuropsychopharmacology, 21(1), 84–88. https://doi.org/10.1093/ijnp/pyx108
  • Short, B., Fong, J., Galvez, V., Shelker, W., & Loo, C. K. (2018). Side-effects associated with ketamine use in depression: A systematic review. The Lancet. Psychiatry, 5(1), 65–78. https://doi.org/10.1016/S2215-0366(17)30272-9
  • Singh, J. B., Fedgchin, M., Daly, E., Xi, L., Melman, C., De Bruecker, G., Tadic, A., Sienaert, P., Wiegand, F., Manji, H., Drevets, W. C., & Van Nueten, L. (2016). Intravenous esketamine in adult treatment-resistant depression: A double-blind, double-randomization, placebo-controlled study. Biological Psychiatry, 80(6), 424–431. https://doi.org/10.1016/j.biopsych.2015.10.018
  • Singh, J. B., Fedgchin, M., Daly, E. J., De Boer, P., Cooper, K., Lim, P., Pinter, C., Murrough, J. W., Sanacora, G., Shelton, R. C., Kurian, B., Winokur, A., Fava, M., Manji, H., Drevets, W. C., & Van Nueten, L. (2016). A double-blind, randomized, placebo-controlled, dose-frequency study of intravenous ketamine in patients with treatment-resistant depression. The American Journal of Psychiatry, 173(8), 816–826. https://doi.org/10.1176/appi.ajp.2016.16010037
  • Smith, G. S., Schloesser, R., Brodie, J. D., Dewey, S. L., Logan, J., Vitkun, S. A., Simkowitz, P., Hurley, A., Cooper, T., Volkow, N. D., & Cancro, R. (1998). Glutamate modulation of dopamine measured in vivo with positron emission tomography (PET) and 11C-raclopride in normal human subjects. Neuropsychopharmacology, 18(1), 18–25. https://doi.org/10.1016/S0893-133X(97)00092-4
  • Sos, P., Klirova, M., Novak, T., Kohutova, B., Horacek, J., & Palenicek, T. (2013). Relationship of ketamine’s antidepressant and psychotomimetic effects in unipolar depression. Neuro Endocrinology Letters, 34(4), 287–293.
  • Sterpenich, V., Vidal, S., Hofmeister, J., Michalopoulos, G., Bancila, V., Warrot, D., Dayer, A., Desseilles, M., Aubry, J.-M., Kosel, M., Schwartz, S., & Vutskits, L. (2019). Increased reactivity of the mesolimbic reward system after ketamine injection in patients with treatment-resistant major depressive disorder. Anesthesiology, 130(6), 923–935. https://doi.org/10.1097/ALN.0000000000002667
  • Su, T.-P., Chen, M.-H., Li, C.-T., Lin, W.-C., Hong, C.-J., Gueorguieva, R., Tu, P.-C., Bai, Y.-M., Cheng, C.-M., & Krystal, J. H. (2017). Dose-related effects of adjunctive ketamine in taiwanese patients with treatment-resistant depression. Neuropsychopharmacology, 42(13), 2482–2492. https://doi.org/10.1038/npp.2017.94
  • Swainson, J., Thomas, R. K., Archer, S., Chrenek, C., MacKay, M.-A., Baker, G., Dursun, S., Klassen, L. J., Chokka, P., & Demas, M. L. (2019). Esketamine for treatment resistant depression. Expert Review of Neurotherapeutics, 19(10), 899–911. https://doi.org/10.1080/14737175.2019.1640604
  • Turner, E. H. (2019). Esketamine for treatment-resistant depression: Seven concerns about efficacy and FDA approval. The Lancet. Psychiatry, 6(12), 977–979. https://doi.org/10.1016/S2215-0366(19)30394-3
  • Vollenweider, F. X., Leenders, K. L., Oye, I., Hell, D., & Angst, J. (1997). Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 7(1), 25–38. https://doi.org/10.1016/s0924-977x(96)00042-9
  • Vollenweider, F. X., Vontobel, P., Øye, I., Hell, D., & Leenders, K. L. (2000). Effects of (S)-ketamine on striatal dopamine: A [11C]raclopride PET study of a model psychosis in humans. Journal of Psychiatric Research, 34(1), 35–43. https://doi.org/10.1016/S0022-3956(99)00031-X
  • Wan, L.-B., Levitch, C. F., Perez, A. M., Brallier, J. W., Iosifescu, D. V., Chang, L. C., Foulkes, A., Mathew, S. J., Charney, D. S., & Murrough, J. W. (2015). Ketamine safety and tolerability in clinical trials for treatment-resistant depression. The Journal of Clinical Psychiatry, 76(03), 247–252. https://doi.org/10.4088/JCP.13m08852
  • White, P. F., Ham, J., Way, W. L., & Trevor, A. J. (1980). Pharmacology of ketamine isomers in surgical patients. Anesthesiology, 52(3), 231–239. https://doi.org/10.1097/00000542-198003000-00008
  • White, P. F., Schüttler, J., Shafer, A., Stanski, D. R., Horai, Y., & Trevor, A. J. (1985). Comparative pharmacology of the ketamine isomers. Studies in volunteers. British Journal of Anaesthesia, 57(2), 197–203. https://doi.org/10.1093/bja/57.2.197
  • WHO. (2017). Depression and other common mental disorders: Global health estimates. World Health Organization.
  • Widman, A. J., & McMahon, L. L. (2018). Disinhibition of CA1 pyramidal cells by low-dose ketamine and other antagonists with rapid antidepressant efficacy. Proceedings of the National Academy of Sciences of the United States of America, 115(13), E3007–E3016. https://doi.org/10.1073/pnas.1718883115
  • Wilkinson, S. T., Ballard, E. D., Bloch, M. H., Mathew, S. J., Murrough, J. W., Feder, A., Sos, P., Wang, G., Zarate, C. A., & Sanacora, G. (2018). The effect of a single dose of intravenous ketamine on suicidal ideation: A systematic review and individual participant data meta-analysis. The American Journal of Psychiatry, 175(2), 150–158. https://doi.org/10.1176/appi.ajp.2017.17040472
  • Williams, N. R., Heifets, B. D., Blasey, C., Sudheimer, K., Pannu, J., Pankow, H., Hawkins, J., Birnbaum, J., Lyons, D. M., Rodriguez, C. I., & Schatzberg, A. F. (2018). Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. The American Journal of Psychiatry, 175(12), 1205–1215. https://doi.org/10.1176/appi.ajp.2018.18020138
  • Winstock, A. R., Mitcheson, L., Gillatt, D. A., & Cottrell, A. M. (2012). The prevalence and natural history of urinary symptoms among recreational ketamine users. BJU International, 110(11), 1762–1766. https://doi.org/10.1111/j.1464-410X.2012.11028.x
  • Xu, A. J., Niciu, M. J., Lundin, N. B., Luckenbaugh, D. A., Ionescu, D. F., Richards, E. M., Vande Voort, J. L., Ballard, E. D., Brutsche, N. E., Machado-Vieira, R., & Zarate, C. A. (2015). Lithium and valproate levels do not correlate with ketamine’s antidepressant efficacy in treatment-resistant bipolar depression. Neural Plasticity, 2015, 1–7. https://doi.org/10.1155/2015/858251
  • Yamaguchi, J.-I., Toki, H., Qu, Y., Yang, C., Koike, H., Hashimoto, K., Mizuno-Yasuhira, A., & Chaki, S. (2018). (2R,6R)-Hydroxynorketamine is not essential for the antidepressant actions of (R)-ketamine in mice. Neuropsychopharmacology, 43(9), 1900–1907. https://doi.org/10.1038/s41386-018-0084-y
  • Yang, C., Kobayashi, S., Nakao, K., Dong, C., Han, M., Qu, Y., Ren, Q., Zhang, J.-C., Ma, M., Toki, H., Yamaguchi, J.-I., Chaki, S., Shirayama, Y., Nakazawa, K., Manabe, T., & Hashimoto, K. (2018). AMPA receptor activation-independent antidepressant actions of ketamine metabolite (S)-norketamine. Biological Psychiatry, 84(8), 591–600. https://doi.org/10.1016/j.biopsych.2018.05.007
  • Yang, C., Qu, Y., Abe, M., Nozawa, D., Chaki, S., & Hashimoto, K. (2017). (R)-ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)-hydroxynorketamine. Biological Psychiatry, 82(5), e43–e44. https://doi.org/10.1016/j.biopsych.2016.12.020
  • Yang, C., Ren, Q., Qu, Y., Zhang, J.-C., Ma, M., Dong, C., & Hashimoto, K. (2018). Mechanistic target of rapamycin-independent antidepressant effects of (R)-ketamine in a social defeat stress model. Biological Psychiatry, 83(1), 18–28. https://doi.org/10.1016/j.biopsych.2017.05.016
  • Yang, C., Shirayama, Y., Zhang, J-c., Ren, Q., Yao, W., Ma, M., Dong, C., & Hashimoto, K. (2015). R-ketamine: A rapid-onset and sustained antidepressant without psychotomimetic side effects. Translational Psychiatry, 5, e632. https://doi.org/10.1038/tp.2015.136
  • Yang, C., Wardenaar, K. J., Bosker, F. J., Li, J., & Schoevers, R. A. (2019). Inflammatory markers and treatment outcome in treatment resistant depression: A systematic review. Journal of Affective Disorders, 257, 640–649. https://doi.org/10.1016/j.jad.2019.07.045
  • Yang, C., Yang, J., Luo, A., & Hashimoto, K. (2019). Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites. Translational Psychiatry, 9(1), 280. https://doi.org/10.1038/s41398-019-0624-1
  • Yang, Y., Cui, Y., Sang, K., Dong, Y., Ni, Z., Ma, S., & Hu, H. (2018). Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature, 554(7692), 317–322. https://doi.org/10.1038/nature25509
  • Yoon, G., Petrakis, I. L., & Krystal, J. H. (2019). Association of combined naltrexone and ketamine with depressive symptoms in a case series of patients with depression and alcohol use disorder. JAMA Psychiatry, 76(3), 337–338. https://doi.org/10.1001/jamapsychiatry.2018.3990
  • Zanos, P., Moaddel, R., Morris, P. J., Georgiou, P., Fischell, J., Elmer, G. I., Alkondon, M., Yuan, P., Pribut, H. J., Singh, N. S., Dossou, K. S. S., Fang, Y., Huang, X.-P., Mayo, C. L., Wainer, I. W., Albuquerque, E. X., Thompson, S. M., Thomas, C. J., Zarate, C. A., & Gould, T. D. (2016). NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature, 533(7604), 481–486. https://doi.org/10.1038/nature17998
  • Zanos, P., Moaddel, R., Morris, P. J., Riggs, L. M., Highland, J. N., Georgiou, P., Pereira, E. F. R., Albuquerque, E. X., Thomas, C. J., Zarate, C. A., & Gould, T. D. (2018). Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms. Pharmacological Reviews, 70(3), 621–660. https://doi.org/10.1124/pr.117.015198
  • Zarate, C. A., Brutsche, N., Laje, G., Luckenbaugh, D. A., Venkata, S. L. V., Ramamoorthy, A., Moaddel, R., & Wainer, I. W. (2012). Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression. Biological Psychiatry, 72(4), 331–338. https://doi.org/10.1016/j.biopsych.2012.03.004
  • Zarate, C. A., Brutsche, N. E., Ibrahim, L., Franco-Chaves, J., Diazgranados, N., Cravchik, A., Selter, J., Marquardt, C. A., Liberty, V., & Luckenbaugh, D. A. (2012). Replication of ketamine’s antidepressant efficacy in bipolar depression: A randomized controlled add-on trial. Biological Psychiatry, 71(11), 939–946. https://doi.org/10.1016/j.biopsych.2011.12.010
  • Zarate, C. A., Singh, J. B., Carlson, P. J., Brutsche, N. E., Ameli, R., Luckenbaugh, D. A., Charney, D. S., & Manji, H. K. (2006). A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Archives of General Psychiatry, 63(8), 856–864. https://doi.org/10.1001/archpsyc.63.8.856
  • Zhang, K., & Hashimoto, K. (2019). Lack of opioid system in the antidepressant actions of ketamine. Biological Psychiatry, 85(6), e25–e27. https://doi.org/10.1016/j.biopsych.2018.11.006
  • Zhao, Y., & Sun, L. (2008). Antidepressants modulate the in vitro inhibitory effects of propofol and ketamine on norepinephrine and serotonin transporter function. Journal of Clinical Neuroscience, 15(11), 1264–1269. https://doi.org/10.1016/j.jocn.2007.11.007
  • Zhou, W., Wang, N., Yang, C., Li, X.-M., Zhou, Z.-Q., & Yang, J.-J. (2014). Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. European Psychiatry: The Journal of the Association of European Psychiatrists, 29(7), 419–423. https://doi.org/10.1016/j.eurpsy.2013.10.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.