589
Views
44
CrossRef citations to date
0
Altmetric
Clinical Review

Th17 cells: A new therapeutic target in inflammatory dermatoses

, , &
Pages 318-326 | Received 28 Mar 2008, Accepted 24 Apr 2008, Published online: 12 Jul 2009

References

  • Asarch A., Orr B., Loo D. S., Gottlieb A. B. Th17 cells: A new paradigm for cutaneous inflammation. J Dermatolog Treat 2008, (in press)
  • Zheng Y., Danilenko D. M., Valdez P., Kasman I., Eastham‐Anderson J., Wu J., et al. Interleukin‐22, a T(H)17 cytokine, mediates IL‐23‐induced dermal inflammation and acanthosis. Nature 2007; 445: 648–51
  • Fitch E., Harper E., Skorcheva I., Kurtz S. E., Blauvelt A. Pathophysiology of psoriasis: Recent advances on IL‐23 and Th17 cytokines. Curr Rheumatol Rep 2007; 9: 461–7
  • Chan J. R., Blumenschein W., Murphy E., Diveu C., Wiekowski M., Abbondanzo S., et al. IL‐23 stimulates epidermal hyperplasia via TNF and IL‐20R2‐dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 2006; 203: 2577–87
  • Piskin G., Sylva‐Steenland R. M. R., Bos J. D., Teunissen M. B. M. In vitro and in situ expression of IL‐23 by keratinocytes in healthy skin and psoriasis lesions: Enhanced expression in psoriatic skin. J Immunol 2006; 176: 1908–15
  • Albanesi C., Cavani A., Girolomoni G. IL‐17 is produced by nickel‐specific T lymphocytes and regulates ICAM‐1 expression and chemokine production in human keratinocytes: Synergistic or antagonist effects with IFN‐gamma and TNF‐alpha. J Immunol 1999; 162: 494–502
  • Ciree A., Michel L., Camilleri‐Broet S., Jean Louis F., Oster M., Flageul B., et al. Expression and activity of IL‐17 in cutaneous T‐cell lymphomas (mycosis fungoides and Sezary syndrome). Int J Cancer 2004; 112: 113–20
  • Hamzaoui K., Hamzaoui A., Guemira F., Bessioud M., Hamza M., Ayed K. Cytokine profile in Behcet's disease patients. Relationship with disease activity. Scand J Rheumatol 2002; 31: 205–10
  • Elder J. T. IL‐15 and psoriasis: Another genetic link to Th17? [comment]. J Invest Dermatol 2007; 127: 2495–7
  • Krueger G. G., Langley R. G., Leonardi C., Yeilding N., Guzzo C., Wang Y., et al. A human interleukin‐12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med 2007; 356: 580–92
  • Toichi E., Torres G., McCormick T. S., Chang T., Mascelli M. A., Kauffman C. L., et al. An anti‐IL‐12p40 antibody down‐regulates type 1 cytokines, chemokines, and IL‐12/IL‐23 in psoriasis. J Immunol 2006; 177: 4917–26
  • Gottlieb A. B., Cooper K. D., McCormick T. S., Toichi E., Everitt D. E., Frederick B., et al. A phase 1, double‐blind, placebo‐controlled study evaluating single subcutaneous administrations of a human interleukin‐12/23 monoclonal antibody in subjects with plaque psoriasis. Curr Med Res Opin 2007; 23: 1081–92
  • Kimball A. B., Gordon K. B., Langley R. G., Menter A., Chartash E. K., Valdes J. Safety and efficacy of ABT‐874, a fully human interleukin 12/23 monoclonal antibody, in the treatment of moderate to severe chronic plaque psoriasis: Results of a randomized, placebo‐controlled, phase 2 trial. Arch Dermatol 2008; 144: 200–7
  • Papp K. A., Langley R. G., Lebwohl M., Krueger G. G., Szapary P., Yeilding N., et al. Efficacy and safety of ustekinumab, a human interleukin‐12/23 monoclonal antibody, in patients with psoriasis: 52‐week results from a randomised, double‐blind, placebo‐controlled trial (PHOENIX 2). Lancet 2008; 371: 1675–84
  • Teunissen M. B., Koomen C. W., de Waal Malefyt R., Wierenga E. A., Bos J. D. Interleukin‐17 and interferon‐gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol 1998; 111: 645–9
  • Albanesi C., Scarponi C., Cavani A., Federici M., Nasorri F., Girolomoni G. Interleukin‐17 is produced by both Th1 and Th2 lymphocytes, and modulates interferon‐gamma‐ and interleukin‐4‐induced activation of human keratinocytes. J Invest Dermatol 2000; 115: 81–7
  • Van Beelen A. J., Teunissen M. B., Kapsenberg M. L., de Jong E. C. Interleukin‐17 in inflammatory skin disorders. Curr Opin Allergy Clin Immunol 2007; 7: 374–81
  • Ishizaki K., Yamada A., Yoh K., Nakano T., Shimohata H., Maeda A., et al. Th1 and type 1 cytotoxic T cells dominate responses in T‐bet overexpression transgenic mice that develop contact dermatitis. J Immunol 2007; 178: 605–12
  • Nakae S., Komiyama Y., Nambu A., Sudo K., Iwase M., Homma I., et al. Antigen‐specific T cell sensitization is impaired in IL‐17‐deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 2002; 17: 375–87
  • Abramovits W. Atopic dermatitis. J Am Acad Dermatol 2005; 53: S86–93
  • Wolk K., Witte E., Wallace E., Docke W. ‐D., Kunz S., Asadullah K., et al. IL‐22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: A potential role in psoriasis. Eur J Immunol 2006; 36: 1309–23
  • Toda M., Leung D. Y., Molet S., Boguniewicz M., Taha R., Christodoulopoulos P., et al. Polarized in vivo expression of IL‐11 and IL‐17 between acute and chronic skin lesions. J Allergy Clin Immunol 2003; 111: 875–81
  • Engelhart K., El Hindi T., Biesalski H. K., Pfitzner I. In vitro reproduction of clinical hallmarks of eczematous dermatitis in organotypic skin models. Arch Dermatol Res 2005; 297: 1–9
  • Spiekstra S. W., Breetveld M., Rustemeyer T., Scheper R. J., Gibbs S. Wound‐healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes. Wound Repair Regen 2007; 15: 708–17
  • Lee E., Trepicchio W. L., Oestreicher J. L., Pittman D., Wang F., Chamian F., et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med 2004; 199: 125–30
  • Piskin G., Sylva‐Steenland R. M., Bos J. D., Teunissen M. B. In vitro and in situ expression of IL‐23 by keratinocytes in healthy skin and psoriasis lesions: Enhanced expression in psoriatic skin. J Immunol 2006; 176: 1908–15
  • Zhang X. J., Yan K. L., Wang Z. M., Yang S., Zhang G. L., Fan X., et al. Polymorphisms in interleukin‐15 gene on chromosome 4q31.2 are associated with psoriasis vulgaris in Chinese population. J Invest Dermatol 2007; 127: 2544–51
  • Grossman R. M., Krueger J., Yourish D., Granelli‐Piperno A., Murphy D. P., May L. T., et al. Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci U S A 1989; 86: 6367–71
  • Baran W., Szepietowski J. C., Mazur G., Baran E. TGF‐beta(1) gene polymorphism in psoriasis vulgaris. Cytokine 2007; 38: 8–11
  • Nockowski P., Szepietowski J. C., Ziarkiewicz M., Baran E. Serum concentrations of transforming growth factor beta 1 in patients with psoriasis vulgaris. Acta Dermatovenerol Croat 2004; 12: 2–6
  • McLInnes I. B. Cytokine targeting in psoriasis and psoriatic arthritis: Beyond TNFalpha. Ernst Schering Res Found Workshop 2006, (56): 29–44
  • McInnes I. B., Gracie J. A. Interleukin‐15: A new cytokine target for the treatment of inflammatory diseases. Curr Opin Pharmacol 2004; 4: 392–7
  • Sabat R., Philipp S., Hoflich C., Kreutzer S., Wallace E., Asadullah K., et al. Immunopathogenesis of psoriasis. Exp Dermatol 2007; 16: 779–98
  • Ma H. L., Liang S., Li J., Napierata L., Brown T., Benoit S., et al. IL‐22 is required for Th17 cell‐mediated pathology in a mouse model of psoriasis‐like skin inflammation. J Clin Invest 2008; 118: 597–607
  • Villadsen L. S., Schuurman J., Beurskens F., Dam T. N., Dagnaes‐Hansen F., Skov L., et al. Resolution of psoriasis upon blockade of IL‐15 biological activity in a xenograft mouse model. J Clin Invest 2003; 112: 1571–80
  • Szodoray P., Alex P., Chappell‐Woodward C. M., Madland T. M., Knowlton N., Dozmorov I., et al. Circulating cytokines in Norwegian patients with psoriatic arthritis determined by a multiplex cytokine array system. Rheumatology (Oxford) 2007; 46: 417–25
  • Rahman P., Inman R. D., Maksymowych W. P., Reeve J. P., Peddle L., Gladman D. D. Association of interleukin‐23R variants with psoriatic arthritis. Arthritis Rheum 2007; 56: S244
  • Zaba L. C., Cardinale I., Gilleaudeau P., Sullivan‐Whalen M., Suarez Farinas M., Fuentes‐Duculan J., et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med 2007; 204: 3183–94
  • Gottlieb A. B., Chamian F., Masud S., Cardinale I., Abello M. V., Lowes M. A., et al. TNF inhibition rapidly down‐regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol 2005; 175: 2721–9
  • Jovanovic D. V., Di Battista J. A., Martel‐Pelletier J., Jolicoeur F. C., He Y., Zhang M., et al. IL‐17 stimulates the production and expression of proinflammatory cytokines, IL‐beta and TNF‐alpha, by human macrophages. J Immunol 1998; 160: 3513–21
  • Iwamoto S., Iwai S., Tsujiyama K., Kurahashi C., Takeshita K., Naoe M., et al. TNF‐alpha drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses. J Immunol 2007; 179: 1449–57
  • Jimenez S. A., Derk C. T. Following the molecular pathways toward an understanding of the pathogenesis of systemic sclerosis. Ann Intern Med 2004; 140: 37–50
  • Kurasawa K., Hirose K., Sano H., Endo H., Shinkai H., Nawata Y., et al. Increased interleukin‐17 production in patients with systemic sclerosis. Arthritis Rheum 2000; 43: 2455–63
  • Katz Y., Nadiv O., Beer Y. Interleukin‐17 enhances tumor necrosis factor alpha‐induced synthesis of interleukins 1, 6, and 8 in skin and synovial fibroblasts: A possible role as a ‘fine‐tuning cytokine’ in inflammation processes. Arthritis Rheum 2001; 44: 2176–84
  • Prud'homme G. J. Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest 2007; 87: 1077–91
  • Edelson R. L. Cutaneous T cell lymphoma: Mycosis fungoides, Sezary syndrome, and other variants. J Am Acad Dermatol 1980; 2: 89–106
  • Langowski J. L., Kastelein R. A., Oft M. Swords into plowshares: IL‐23 repurposes tumor immune surveillance. Trends Immunol 2007; 28: 207–12
  • Langowski J. L., Zhang X., Wu L., Mattson J. D., Chen T., Smith K., et al. IL‐23 promotes tumour incidence and growth. Nature 2006; 442: 461–5
  • Benchetrit F., Ciree A., Vives V., Warnier G., Gey A., Sautes‐Fridman C., et al. Interleukin‐17 inhibits tumor cell growth by means of a T‐cell‐dependent mechanism. Blood 2002; 99: 2114–21
  • Ciree A., Michel L., Camilleri‐Broet S., Jean Louis F., Oster M., Flageul B., et al. Expression and activity of IL‐17 in cutaneous T‐cell lymphomas (mycosis fungoides and Sezary syndrome). Int J Cancer 2004; 112: 113–20
  • Tartour E., Fossiez F., Joyeux I., Galinha A., Gey A., Claret E., et al. Interleukin 17, a T‐cell‐derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice. Cancer Res 1999; 59: 3698–704
  • Overwijk W. W., de Visser K. E., Tirion F. H., de Jong L. A., Pols T. W., van der Velden Y. U., et al. Immunological and antitumor effects of IL‐23 as a cancer vaccine adjuvant. J Immunol 2006; 176: 5213–22
  • Numasaki M., Fukushi J., Ono M., Narula S. K., Zavodny P. J., Kudo T., et al. Interleukin‐17 promotes angiogenesis and tumor growth. Blood 2003; 101: 2620–7
  • Kryczek I., Wei S., Zou L., Altuwaijri S., Szeliga W., Kolls J., et al. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL‐2 in the tumor microenvironment. J Immunol 2007; 178: 6730–3
  • Lahita R. J. Clinical presentation of systemic lupus erythematosus. Textbook of Rheumatology, W. N Kelley, E. D Harris, S Ruddy, C. B Sledge. WB Saunders company, Philadelphia 1997; 1028–39, 5th ed
  • Hahn B. H. Systemic lupus erythematosus. Harrison's principles of internal medicine, D. L Kasper, E Braunwald, A. S Fouci, S. L Hauser, D. L Longo, J. L Jameson. McGraw‐Hill, New York 2005; 2: 1960–1967, 16th ed
  • Ruiz‐Irastorza G., Khamashta M. A., Castellino G., Hughes G. R. Systemic lupus erythematosus. Lancet 2001; 357: 1027–32
  • Wong C. K., Ho C. Y., Li E. K., Lam C. W. Elevation of proinflammatory cytokine (IL‐18, IL‐17, IL‐12) and Th2 cytokine (IL‐4) concentrations in patients with systemic lupus erythematosus. Lupus 2000; 9: 589–93
  • Lauwerys B. R., Van Snick J., Houssiau F. A. Serum IL‐12 in systemic lupus erythematosus: Absence of p70 heterodimers but presence of p40 monomers correlating with disease activity. Lupus 2002; 11: 384–7
  • Linker‐Israeli M., Deans R. J., Wallace D. J., Prehn J., Ozeri‐Chen T., Klinenberg J. R. Elevated levels of endogenous IL‐6 in systemic lupus erythematosus. A putative role in pathogenesis. J Immunol 1991; 147: 117–23
  • Linker‐Israeli M., Wallace D. J., Prehn J., Michael D., Honda M., Taylor K. D., et al. Association of IL‐6 gene alleles with systemic lupus erythematosus (SLE) and with elevated IL‐6 expression. Genes Immun 1999; 1: 45–52
  • Spronk P. E., ter Borg E. J., Limburg P. C., Kallenberg C. G. Plasma concentration of IL‐6 in systemic lupus erythematosus; an indicator of disease activity?. Clin Exp Immunol 1992; 90: 106–10
  • Kikly K., Liu L., Na S., Sedgwick J. D. The IL‐23/Th(17) axis: Therapeutic targets for autoimmune inflammation. Curr Opin Immunol 2006; 18: 670–5
  • Hata T., Kavanaugh A. Rheumatoid arthritis in dermatology. Clin Dermatol 2006; 24: 430–7
  • Nishimoto N., Kishimoto T. Humanized antihuman IL‐6 receptor antibody, tocilizumab. Handb Exp Pharmacol 2008, (181): 151–60
  • Ziolkowska M., Koc A., Luszczykiewicz G., Ksiezopolska‐Pietrzak K., Klimczak E., Chwalinska‐Sadowska H., et al. High levels of IL‐17 in rheumatoid arthritis patients: IL‐15 triggers in vitro IL‐17 production via cyclosporin A‐sensitive mechanism. J Immunol 2000; 164: 2832–8
  • Lubberts E. IL‐17/Th17 targeting: On the road to prevent chronic destructive arthritis?. Cytokine 2008; 41: 84–91
  • Kim H. R., Kim H. S., Park M. K., Cho M. L., Lee S. H., Kim H. Y. The clinical role of IL‐23p19 in patients with rheumatoid arthritis. Scand J Rheumatol 2007; 36: 259–64
  • Yamada H., Kaibara N., Okano S., Maeda T., Shuto T., Nakashima Y., et al. Interleukin‐15 selectively expands CD57+ CD28– CD4+ T cells, which are increased in active rheumatoid arthritis. Clin Immunol 2007; 124: 328–35
  • Connell L., McInnes I. B. New cytokine targets in inflammatory rheumatic diseases. Best Pract Res Clin Rheumatol 2006; 20: 865–78
  • Guitart J. Management of dermatologic complications of inflammatory bowel disease. Am J Gastroenterol 2007; 102: S68–S71
  • Mudter J., Neurath M. F. Il‐6 signaling in inflammatory bowel disease: Pathophysiological role and clinical relevance. Inflamm Bowel Dis 2007; 13: 1016–23
  • Fujino S., Andoh A., Bamba S., Ogawa A., Hata K., Araki Y., et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003; 52: 65–70
  • Schmidt C., Giese T., Ludwig B., Mueller‐Molaian I., Marth T., Zeuzem S., et al. Expression of interleukin‐12‐related cytokine transcripts in inflammatory bowel disease: Elevated interleukin‐23p19 and interleukin‐27p28 in Crohn's disease but not in ulcerative colitis. Inflamm Bowel Dis 2005; 11: 16–23
  • Stallmach A., Giese T., Schmidt C., Ludwig B., Mueller‐Molaian I., Meuer S. C. Cytokine/chemokine transcript profiles reflect mucosal inflammation in Crohn's disease. Int J Colorectal Dis 2004; 19: 308–15
  • Sayinalp N., Ozcebe O. I., Ozdemir O., Haznedaroglu I. C., Dundar S., Kirazli S. Cytokines in Behcet's disease. J Rheumatol 1996; 23: 321–2
  • Laan M., Linden A. IL‐17 as a potential target for modulating airway neutrophilia. Curr Pharm Des 2002; 8: 1855–61
  • Ureten K., Ertenli I., Ozturk M. A., Kiraz S., Onat A. M., Tuncer M., et al. Neutrophil CD64 expression in Behcet's disease. J Rheumatol 2005; 32: 849–52
  • Cargill M., Schrodi S. J., Chang M., Garcia V. E., Brandon R., Callis K. P., et al. A large‐scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis‐risk genes. Am J Hum Genet 2007; 80: 273–90
  • Tsunemi Y., Saeki H., Nakamura K., Sekiya T., Hirai K., Fujita H., et al. Interleukin‐12 p40 gene (IL12B) 3′‐untranslated region polymorphism is associated with susceptibility to atopic dermatitis and psoriasis vulgaris. J Dermatol Sci 2002; 30: 161–6
  • Yan K. L., Huang W., Zhang X. J., Yang S., Chen Y. M., Xiao F. L., et al. Follow‐up analysis of PSORS9 in 151 Chinese families confirmed the linkage to 4q31‐32 and refined the evidence to the families of early‐onset psoriasis. J Invest Dermatol 2007; 127: 312–18
  • Sagoo G. S., Tazi‐Ahnini R., Barker J. W., Elder J. T., Nair R. P., Samuelsson L., et al. Meta‐analysis of genome‐wide studies of psoriasis susceptibility reveals linkage to chromosomes 6p21 and 4q28‐q31 in Caucasian and Chinese Hans population. J Invest Dermatol 2004; 122: 1401–5
  • Chamian F., Lowes M. A., Lin S. L., Lee E., Kikuchi T., Gilleaudeau P., et al. Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc Natl Acad Sci U S A 2005; 102: 2075–80
  • Piskin G., Tursen U., Sylva‐Steenland R. M., Bos J. D., Teunissen M. B. Clinical improvement in chronic plaque‐type psoriasis lesions after narrow‐band UVB therapy is accompanied by a decrease in the expression of IFN‐gamma inducers – IL‐12, IL‐18 and IL‐23. Exp Dermatol 2004; 13: 764–72
  • Mucida D., Park Y., Kim G., Turovskaya O., Scott I., Kronenberg M., et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007; 317: 256–60
  • Wolk K., Kunz S., Witte E., Friedrich M., Asadullah K., Sabat R. IL‐22 increases the innate immunity of tissues. Immunity 2004; 21: 241–54
  • Sabat R., Sterry W., Philipp S., Wolk K. Three decades of psoriasis research: Where has it led us?. Clin Dermatol 2007; 25: 504–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.