7,831
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Deucravacitinib in the treatment of psoriasis

, ORCID Icon & ORCID Icon
Article: 2154122 | Received 10 Oct 2022, Accepted 29 Nov 2022, Published online: 13 Dec 2022

References

  • Greb JE, Goldminz AM, Elder JT, et al. Psoriasis. Nat Rev Dis Primers. 2016;2:16082.
  • Parisi R, Symmons DPM, Griffiths CEM, Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) project team, et al. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013;133(2):377–385.
  • Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA. 2020;323(19):1945–1960.
  • Boehncke WH, Schon MP. Psoriasis. Lancet. 2015;386(9997):983–994.
  • Raharja A, Mahil SK, Barker JN. Psoriasis: a brief overview. Clin Med (Lond). 2021;21(3):170–173.
  • Rigopoulos D, Rompoti N, Gregoriou S. Management of nail psoriasis. Dermatol Clin. 2021;39(2):211–220.
  • Klaassen KM, van de Kerkhof PC, Pasch MC. Nail psoriasis: a questionnaire-based survey. Br J Dermatol. 2013;169(2):314–319.
  • Takeshita J, Grewal S, Langan SM, et al. Psoriasis and comorbid diseases: epidemiology. J Am Acad Dermatol. 2017;76(3):377–390.
  • Amin M, Lee EB, Tsai T-F, et al. Psoriasis and co-morbidity. Acta Derm Venereol. 2020;100(3):adv00033.
  • Rendon A, Schakel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019;20(6):1475.
  • Balak DMW, Gerdes S, Parodi A, et al. Long-term safety of oral systemic therapies for psoriasis: a comprehensive review of the literature. Dermatol Ther (Heidelb). 2020;10(4):589–613.
  • Papp K, Reich K, Leonardi CL, et al. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: results of a phase III, randomized, controlled trial (efficacy and safety trial evaluating the effects of apremilast in psoriasis [ESTEEM] 1). J Am Acad Dermatol. 2015;73(1):37–49.
  • Balogh EA, Bashyam AM, Ghamrawi RI, et al. Emerging systemic drugs in the treatment of plaque psoriasis. Expert Opin Emerg Drugs. 2020;25(2):89–100.
  • Kamata M, Tada Y. Safety of biologics in psoriasis. J Dermatol. 2018;45(3):279–286.
  • Kalb RE, Fiorentino DF, Lebwohl MG, et al. Risk of serious infection with biologic and systemic treatment of psoriasis: results from the psoriasis longitudinal assessment and registry (PSOLAR). JAMA Dermatol. 2015;151(9):961–969.
  • Gran F, et al. Current developments in the immunology of psoriasis. Yale J Biol Med. 2020;93(1):97–110.
  • Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol. 2017;140(3):645–653.
  • Alwan W, Nestle FO. Pathogenesis and treatment of psoriasis: exploiting pathophysiological pathways for precision medicine. Clin Exp Rheumatol. 2015;33(5 Suppl 93):S2–S6.
  • Hawkes JE, Yan BY, Chan TC, et al. Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. J Immunol. 2018;201(6):1605–1613.
  • Yamanaka K, Yamamoto O, Honda T. Pathophysiology of psoriasis: a review. J Dermatol. 2021;48(6):722–731.
  • Nogueira M, Puig L, Torres T. JAK inhibitors for treatment of psoriasis: focus on selective TYK2 inhibitors. Drugs. 2020;80(4):341–352.
  • Virtanen, AT, et al. Selective JAKinibs: prospects in inflammatory and autoimmune diseases. BioDrugs. 2019;33(1):15–32.
  • Villarino AV, Kanno Y, Ferdinand JR, et al. Mechanisms of jak/STAT signaling in immunity and disease. J Immunol. 2015;194(1):21–27.
  • Damsky W, King BA. JAK inhibitors in dermatology: the promise of a new drug class. J Am Acad Dermatol. 2017;76(4):736–744.
  • Catlett IM, et al. Molecular and clinical effects of selective TYK2 inhibition with deucravacitinib in psoriasis. J Allergy Clin Immunol. 2022;149(6):2010–2020.e8.
  • Seif F, Khoshmirsafa M, Aazami H, et al. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal. 2017;15(1):23.
  • O'Shea JJ, Schwartz DM, Villarino AV, et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–328.
  • Babon JJ, Lucet IS, Murphy JM, et al. The molecular regulation of janus kinase (JAK) activation. Biochem J. 2014;462(1):1–13.
  • D'Urso DF, Chiricozzi A, Pirro F, et al. New JAK inhibitors for the treatment of psoriasis and psoriatic arthritis. G Ital Dermatol Venereol. 2020;155(4):411–420.
  • Xin P, Xu X, Deng C, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol. 2020;80:106210.
  • Schwartz DM, Bonelli M, Gadina M, et al. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25–36.
  • Muromoto R, Shimoda K, Oritani K, et al. Therapeutic advantage of Tyk2 inhibition for treating autoimmune and chronic inflammatory diseases. Biol Pharm Bull. 2021;44(11):1585–1592.
  • Howell MD, Kuo FI, Smith PA. Targeting the janus kinase family in autoimmune skin diseases. Front Immunol. 2019;10:2342.
  • Burke JR, et al. Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain. Sci Transl Med. 2019;11(502):eaaw1736.
  • Abduelmula A, Gooderham MJ. TYK2 inhibition: changing the treatment landscape for psoriasis? Expert Rev Clin Immunol. 2022;18(3):185–187.
  • Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: what can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175–187.
  • Genetic Analysis of Psoriasis, C, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 2010;42(11):985–990.
  • Minegishi Y, Saito M, Morio T, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–755.
  • Dendrou CA, Cortes A, Shipman L, et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci Transl Med. 2016;8(363):363ra149.
  • Jo CE, Gooderham M, Beecker J. TYK 2 inhibitors for the treatment of dermatologic conditions: the evolution of JAK inhibitors. Int J Dermatol. 2022;61(2):139–147.
  • Sohn SJ, Barrett K, Van Abbema A, et al. A restricted role for TYK2 catalytic activity in human cytokine responses revealed by novel TYK2-selective inhibitors. J Immunol. 2013;191(5):2205–2216.
  • Danese S, Peyrin-Biroulet L. Selective tyrosine kinase 2 inhibition for treatment of inflammatory bowel disease: new hope on the rise. Inflamm Bowel Dis. 2021;27(12):2023–2030.
  • Wrobleski ST, Moslin R, Lin S, et al. Highly selective inhibition of tyrosine kinase 2 (TYK2) for the treatment of autoimmune diseases: discovery of the allosteric inhibitor BMS-986165. J Med Chem. 2019;62(20):8973–8995.
  • Thaci D, et al. Deucravacitinib in moderate to severe psoriasis: clinical and quality-of-life outcomes in a phase 2 trial. Dermatol Ther (Heidelb). 2022;12(2):495–510.
  • Gadina M, Chisolm DA, Philips RL, et al. Translating JAKs to jakinibs. J Immunol. 2020;204(8):2011–2020.
  • Banerjee S, Biehl A, Gadina M, et al. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs. 2017;77(5):521–546.
  • Chimalakonda A, Burke J, Cheng L, et al. Selectivity profile of the tyrosine kinase 2 inhibitor deucravacitinib compared with janus kinase 1/2/3 inhibitors. Dermatol Ther (Heidelb). 2021;11(5):1763–1776.
  • Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843–862.
  • Catlett I, Aras U, Hansen L, et al. First-in-human study of deucravacitinib: a selective, potent, allosteric small molecule inhibitor of tyrosine kinase 2. Clin Transl Sci. 2022. DOI:10.1111/cts.13435
  • Papp K, Gordon K, Thaçi D, et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med. 2018;379(14):1313–1321.
  • Mease PJ, Deodhar AA, van der Heijde D, et al. Efficacy and safety of selective TYK2 inhibitor, deucravacitinib, in a phase II trial in psoriatic arthritis. Ann Rheum Dis. 2022;81(6):815–822.
  • Armstrong A, Gooderham M, Warren RB, et al. Pos1042 efficacy and safety of deucravacitinib, an oral, selective tyrosine kinase 2 (tyk2) inhibitor, compared with placebo and apremilast in moderate to severe plaque psoriasis: results from the phase 3 poetyk pso-1 study. Ann Rheum Dis. 2021;80(Suppl 1):795.1–796.
  • Strober B, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 POETYK PSO-2 trial. J Am Acad Dermatol. 2022;S0190-9622(22)02643-3. DOI:10.1016/j.jaad.2022.08.061
  • Warren R, Armstrong A, Gooderham M, et al. Deucravacitinib, an oral, selective tyrosine kinase 2 (TYK2) inhibitor, in moderate to severe plaque psoriasis: 52-week efficacy results from the phase 3 POETYK PSO-1 and PSO-2 trials. J of Skin. 2022;6(2):s4.
  • Warren R, et al. Abstract No 2857 - deucravacitinib, an oral, selective tyrosine kinase 2 inhibitor, in moderate to severe plaque psoriasis: 52-week efficacy results from the phase 3 POETYK PSO-1 and POETYK PSO-2 trials in EADV 30th Congr. 2021.
  • Lé AM, Puig L, Torres T. Deucravacitinib for the treatment of psoriatic disease. Am J Clin Dermatol. 2022;23(6):813–822.
  • Armstrong AW, Gooderham M, Warren RB, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial. J Am Acad Dermatol. 2022;S0190-9622(22)02256-3. DOI:10.1016/j.jaad.2022.07.002
  • Warren RB, et al. POSTER - Deucravacitinib long-term efficacy and safety in plaque psoriasis: 2-year results from the phase 3 POETYK PSO program in European Academy of Dermatology and Venereology (EADV) Spring Symposium. 2022.