56
Views
0
CrossRef citations to date
0
Altmetric
Original

Salamander locomotion-induced head movement and retinal motion sensitivity in a correlation-based motion detector model

&
Pages 101-128 | Received 01 Mar 2007, Accepted 15 May 2007, Published online: 09 Jul 2009

References

  • Amthor FR, Keyser KT, Dmitrieva NA. Effects of the destruction of starburst-cholinergic amacrine cells by the toxin AF64A on rabbit retinal directional selectivity. Visual Neuroscience 2002; 19: 495–509
  • Armstrong-Gold CE, Rieke F. Bandpass filtering at the rod to second-order cell synapse in salamander (Ambystoma tigrinum) retina. J Neuroscience 2003; 23(9)3796–3806
  • Azizi E, Landberg T. Effects of metamorphosis on the aquatic escape response of the two-lined salamander (Eurycea bislineata). J Experimental Biol 2002; 205: 841–849
  • Baccus SA. Timing and computation in inner retinal circuitry. Ann Rev Physiol 2007; 69: 271–290
  • Balboa RM, Grzywacz NM. The role of early retinal lateral inhibition: More than maximizing luminance information. Visual Neuroscience 2000; 17: 77–89
  • Borst A, Egelhaaf M. Principles of visual motion detection. Trends in Neurosciences 1989; 12: 297–306
  • Clifford CWG, Ibbotson MR. Fundamental mechanisms of visual motion detection: Models, cells, and functions. Progress Neurobiol 2003; 68: 409–437
  • Coleman PA, Miller RF. Measurement of passive membrane parameters with whole-cell recording from neurons in the intact amphibian retina. J Neurophysiol 1989; 61: 218–230
  • D’Aout K, Aerts P. Kinematics and efficiency of steady swimming in adult axolotls (Ambystoma mexicanum). J Experimental Biol 1997; 200: 1863–1871
  • Delbrück T. Silicon retina with correlation-based, velocity-tuned pixels. IEEE Trans Neural Networks 1993; 4: 529–541
  • Dowling JE. The retina: An approachable part of the brain. Belknap Press of Harvard University Press, Cambridge, MA 1987
  • Dror RO, O’Carroll DC, Laughlin SB. Accuracy of velocity estimation by Reichardt correlators. J Opt Soc Amer A 2001; 18(2)241–252
  • Euler T, Detwiler PB, Denk W. Nature 2002; 418: 845–852
  • Fahey PK, Burkhardt DA. Center-surround organization in bipolar cells: Symmetry for opposing contrasts. Visual Neuroscience 2003; 20: 1–10
  • Fried SI, Munch TA, Werblin FS. Mechanisms and circuitry underlying directional selectivity in the retina. Nature 2002; 420: 411–414
  • Frolich LM, Biewener AA. Kinematic and electromyographic analysis of the functional role of the body axis during terrestrial and aquatic locomotion in the salamander Ambystoma tigrinum. J Experimental Biol 1992; 162: 107–130
  • Gillis GB. Anguilliform locomotion in an elongate salamander (Siren intermedia): Effects of speed on axial undulatory movements. J Experimental Biol 1997; 200: 767–784
  • Grzywacz NM, Amthor FR, Merwine DK. Necessity of acetylcholine for retinal directionally selective responses to drifting gratings in rabbit. J Physiol 1998; 512: 575–581
  • Grzywacz NM, Koch C. Functional properties of models for direction selectivity in the retina. Synapse 1987; 1: 417–434
  • Hildreth EC, Koch C. The analysis of visual motion: From computational theory to neuronal mechanisms. Ann Rev Neurosci 1987; 10: 477–533
  • Ibbotson MR, Clifford CWG. Characterising temporal delay filters in biological motion detectors. Vision Research 2001; 41: 2311–2323
  • Ijspeert AJ. A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybernet 2001; 84: 331–348
  • Lee S, Zhou ZJ. The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells. Neuron 2006; 51: 787–799
  • Manteuffel G, Plasa L, Sommer TJ, Wess O. Involuntary eye movements in salamanders. Naturwissenschaften 1977; 64: 533–534
  • Ölveczky BP, Baccus SA, Meister M. Segregation of object and background motion in the retina. Nature 2003; 423: 401–408
  • O’Malley DM, Sandell JH, Masland RH. Co-release of acetylcholine and GABA by the starburst amacrine cells. J Neurosci 1992; 12(4)1394–1408
  • Reichardt W. Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. Sensory communication, WA Rosenblith. John Wiley and Sons, Inc., MIT Press, New York, London, Cambridge, MA 1961
  • Reichardt W, Egelhaaf M, Guo A. Processing of figure and background motion in the visual system of the fly. Biol Cybernet 1989; 61: 327–345
  • Roth G. Visual behavior in salamanders. Springer-Verlag, Berlin, Heidelberg, Paris, Tokyo 1987
  • Roth G, Blanke J, Ohle M. Brain size and morphology in miniaturized plethodontid salamanders. Brain, Behavior, and Evolution 1995; 45: 84–95
  • Roth G, Dicke U, Wiggers W. Vision. Amphibian biology, Vol. 3, sensory perception, H. Heatwole. Surrey, Beatty and Sons, Chipping Norton 1998
  • Ruderman DL. The statistics of natural images. Network: Computation in Neural Systems 1994; 5: 517–548
  • Ruderman DL, Bialek W. Statistics of natural images: Scaling in the woods. Phys Rev Lett 1994; 73: 814–817
  • Sarpeshkar R, Kramer J, Indiveri G, Koch C. Analog VLSI architectures for motion processing: From fundamental limits to system applications. Proc IEEE 1996; 84: 969–987
  • Schuelert N, Dicke U. Dynamic response properties of visual neurons and context-dependent surround effects on receptive fields in the tectum of the salamander Plethodon shermani. Neuroscience 2005; 134: 617–632
  • Segev R, Puchalla J, Berry II MJ. Functional organization of ganglion cells in the salamander retina. J Neurophysiol 2006; 95: 2277–2292
  • Teeters JL, Arbib MA. A model of anuran retina relating interneurons to ganglion cell responses. Biol Cybernet 1991; 64(3)197–207
  • van Hateren JH, van der Schaaf A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc Royal Soc London B 1998; 265: 359–366
  • Vígh J, Bánvölgyi T, Wilhelm M. Amacrine cells of the anuran retina: Morphology, chemical neuroanatomy, and physiology. Microscopy Res Tech 2000; 50(5)373–383
  • Wang DL, Arbib MA. How does the toad's visual system discriminate different wormlike stimuli?. Biol Cybernet 1990; 64: 251–261
  • Yoshida K, Watanabe D, Ishikane H, Tachibana M, Pastan I, Nakanishi S. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 2001; 30: 771–780
  • Zanker JM. Looking at op art from a computational viewpoint. Spatial Vision 2004; 17: 75–94
  • Zanker JM, Srinivasan MV, Egelhaaf M. Speed tuning in elementary motion detectors of the correlation type. Biol Cybernet 1999; 80: 109–116
  • Zanker JM, Zeil J. Movement-induced motion signal distributions in outdoor scenes. Network: Comput Neural Syst 2005; 16(4)357–376
  • Zeil J, Zanker JM. A glimpse into crabworld. Vision Research 1997; 37: 3417–3426
  • Zhang J, Wu SM. Immunocytochemical analysis of cholinergic amacrine cells in the tiger salamander retina. Neuroreport 2001; 12: 1371–1375
  • Zhang J, Yang Z, Wu SM. Immuocytochemical analysis of spatial organization of photoreceptors and amacrine and ganglion cells in the tiger salamander retina. Visual Neuroscience 2004; 101: 163–169

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.