182
Views
6
CrossRef citations to date
0
Altmetric
Original

An oscillatory circuit underlying the detection of disruptions in temporally-periodic patterns

, , &
Pages 106-135 | Received 17 Jul 2008, Accepted 22 Apr 2009, Published online: 13 Aug 2009

References

  • Art J, Fettiplace R. Variation of membrane properties in hair cells isolated from the turtle cochlea. Journal of Physiology 1987; 385: 207–242
  • Baccus S, Meister M. Fast and slow contrast adaptation in retinal circuitry. Neuron 2002; 36: 909–919
  • Bell C, Bodznick D, Montgomery J, Bastian J. The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behavior and Evolution 1997; 50: 17–31
  • Berry MH, Brivanlou I, Jordan T, Meister M. Anticipation of moving stimuli by the retina. Nature 1999; 398: 334–338
  • Berry M, II, Meister M. Refractoriness and neural precision. Journal of Neuroscience 1998; 18: 2200–2211
  • Bullock T, Hofmann M, Nahm F, New J, Prechtl J. Event-related potentials in the retina and optic tectum of fish. Journal of Neurophysiology 1990; 64: 903–914
  • Bullock T, Karamürsel S. Dynamic properties of human visual evoked and omitted stimulus potentials. Electroencephalography and Clinical Neurophysiology 1994; 91: 42–53
  • Bullock T, Karamürsel S, Hoffman M. Interval-specific event related potentials to omitted stimuli in the electrosensory pathway in elasmobranchs: An elementary form of expectation. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology 1993; 172: 501–510
  • Burkhardt D, Fahey P. Contrast enhancement and distributed encoding by bipolar cells in the retina. Journal of Neurophysiology 1998; 80: 1070–1081
  • Burkhardt D, Fahey P, Sikora M. Responses of ganglion cells to contrast steps in the light-adapted retina of the tiger salamander. Visual Neuroscience 1998; 15: 219–229
  • Burrone J, Lagnado L. Electrical resonance and Ca2+ influx in the synaptic terminal of depolarizing bipolar cells from the goldfish retina. Journal of Physiology 1997; 505: 571–584
  • Busse L, Woldorff M. The ERP omitted stimulus response to “no-stim” events and its implications for fast-rate event-related fMRI designs. NeuroImage 2003; 18: 856–864
  • Chichilnisky E. A simple white noise analysis of neuronal light responses. Network 2001; 12: 199–213
  • Cook J, Becker D. Gap junctions in the vertebrate retina. Microscopy Research and Technique 1995; 31: 408–419
  • Craven K, Zagotta W. CNG and HCN channels: Two peas, one pod. Annual Review of Physiology 2006; 68: 375–401
  • Dayan P, Abbott LF. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge, MA 2001
  • Demb J, Zaghloul K, Haarsma L, Sterling P. Bipolar cells contribute to nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian retina. Journal of Neuroscience 2001; 21: 7447–7454
  • Detwiler P, Hodgkin A, McNaughton P. Temporal and spatial characteristics of the voltage response of rods in the retina of the snapping turtle. Journal of Physiology 1980; 300: 213–250
  • DeVries S. Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 2000; 28: 847–856
  • DeVries S, Schwartz E. Kainate receptors mediate synaptic transmission between cones and ‘off ’ bipolar cells in a mammalian retina. Nature 1999; 397: 157–60
  • Fairhall A, Burlingame C, Narasimhan R, Harris R, Puchalla J, Berry II M. Selectivity for multiple stimulus features in retinal ganglion cells. Journal of Neurophysiology 2006; 96: 2724–2738
  • Friedman D, Cycowicz Y, Gaeta H. The novelty P3: An event-related brain potential (ERP) sign of the brain's evaluation of novelty. Neuoroscience and Biobehavioral Reviews 2001; 25: 355–373
  • Fyk-Kolodziej B, Pourcho R. Differential distribution of hyperpolarization-activated and cyclic nucleotide-gated channels in cone bipolar cells of the rat retina. The Journal of Comparative Neurology 2007; 501: 891–903
  • Geffen M, de Vries S, Meister M. Retinal ganglion cells can rapidly change polarity from off to on. PLoS Biology 2007; 5: e65
  • Gutfreud Y, Yarom Y, Segev I. Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: Physiology and modelling. Journal of Physiology 1995; 483: 621–640
  • Hille B. Ionic channels of excitable membranes. Sinauer Associates, Sunderland, MA 1992
  • Hosoya T, Baccus S, Meister M. Dynamic predictive coding by the retina. Nature 2005; 436: 71–77
  • Hutcheon B, Miura R, Puil E. Subthreshold membrane resonance in neocortical neurons. Journal of Neurophysiology 1996; 76: 683–697
  • Hutcheon B, Miura R, Yarom Y, Puil E. Low-threshold calcium current and resonance in thalamic neurons: A model of frequency preference. Journal of Neurophysiology 1994; 71: 583–594
  • Hutcheon B, Yarom Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in Neuroscience 2000; 23: 216–22
  • Ichinose T, Shields C, Lukasiewicz P. Sodium channels in transient retinal bipolar cells enhance visual responses in ganglion cells. Journal of Neuroscience 2005; 25: 1856–1865
  • Ivanova E, Müller F. Retinal bipolar cell types differ in their inventory of ion channels. Visual Neuroscience 2006; 23: 143–154
  • Jääskeläinen I, Ahveninen J, Bonmassar G, Dale A, Ilmoniemi R, Levänen S, Lin FH, May P, Melcher J, Stufflebeam S, et al. Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences USA 2004; 101: 6809–6814
  • Jones E, Gray-Keller M, Fettiplace R. The role of Ca2+ activated K+ channel spliced variants in the tonotopic organization of the turtle cochlea. Journal of Physiology 1999; 518: 653–665
  • Karamürsel S, Bullock T. Dynamics of event-related potentials to trains of dark and light flashes: Responses to missing and extra stimuli in elasmobranch fish. Electroencephalography and Clinical Neurophysiology 1994; 90: 461–471
  • Keat J, Reinagel P, Reid R, Meister M. Predicting every spike: A model for the response of a visual neuron. Neuron 2001; 30: 803–817
  • Klinke R, Fruhstorfer H, Finkenzeller P. Evoked responses as a function of external and stored information. Electroencephalography and Clinical Neurophysiology 1968; 25: 119–122
  • Koch C. Cable theory in neurons with active linearized membrane. Biology Cybernetics 1984; 50: 15–33
  • Llinas R. The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science 1988; 242: 1654–1664
  • Llinas R, Steriade M. Bursting of thalamic neurons and states of vigilance. Journal of Neurophysiology 2006; 95: 575–582
  • Llinas R, Yarom Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation. Journal of Physiology 1986; 376: 163–182
  • Mao B, MacLeish P, Victor J. Relation between potassium-channel kinetics and the intrinsic dynamics in isolated retinal bipolar cells. Journal of Computational Neuroscience 2002; 12: 147–163
  • Mao B, MacLeish P, Victor J. Role of hyperpolarization-activated currents for the intrinsic dynamics of isolated retinal neurons. Biophysical Journal 2003; 84: 2756–2767
  • Margolis D, Detwiler P. Different mechanisms generate maintained activity in ON and OFF retinal ganglion cells. Journal of Neuroscience 2007; 27: 5994–6005
  • Marmarelis P, Marmarelis V. Analysis of physiological systems: The white-noise approach. Plenum Press, New York 1978
  • Meister M, Pine J, Baylor DA. Multi-neuronal signals from the retina: Acquisition and analysis. Journal of Neuroscience Methods 1994; 51: 95–106
  • Pan Z. Differential expression of high- and two types of low-voltage-activated calcium currents in rod and cone bipolar cells of the rat retina. Journal of Neurophysiology 2000; 83: 513–527
  • Pike F, Goddard R, Suckling J, Ganter P, Kasthuri N, Paulsen O. Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. Journal of Physiology 2000; 529: 205–213
  • Pillow J, Paninski L, Uzzell V, Simoncelli E, Chichilnisky E. Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience 2005; 25: 11003–11013
  • Pillow J, Simoncelli E. Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis. Journal of Vision 2006; 6: 414–428
  • Prechtl J, Bullock T. Event-related potentials to omitted visual stimuli in a reptile. Electroencephalography and Clinical Neurophysiology 1994; 91: 54–66
  • Protti D, Flores-Herr N, Gersdorff H. Light evokes Ca2+ spikes in the axon terminal of a retinal bipolar cell. Neuron 2000; 25: 215–227
  • Puil E, Meiri H, Yarom Y. Resonant behavior and frequency preferences of thalamic neurons. Journal of Neurophysiology 1994; 71: 575–582
  • Richardson M, Brunel N, Hakim V. From subthreshold to firing rate resonance. Journal of Neurophysiology 2003; 89: 2538–2554
  • Robinson R, Siegelbaum S. Hyperpolarization-activated cation currents: From molecules to physiological function. Annual Review of Physiology 2003; 65: 453–480
  • Rodieck R, Stone J. Analysis of receptive fields of cat retinal ganglion cells. Journal of Neurophysiology 1965a; 28: 833–849
  • Rodieck R, Stone J. Response of cat retinal ganglion cells to moving visual patterns. Journal of Neurophysiology 1965b; 28: 819–832
  • Rogers R, Papanicolaou A, Baumannn S, Eisenberg H. Late magnetic fields and positive evoked potentials following infrequent and unpredictable omissions of visual stimuli. Electroencephalography and Clinical Neurophysiology 1992; 83: 146–152
  • Roska B, Nemeth E, Werblin F. Response to change is facilitated by a three-neuron disinhibitory pathway in the tiger salamander retina. Journal of Neuroscience 1998; 18: 3451–3459
  • Roska B, Werblin F. Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 2001; 410: 583–587
  • Saito T, Kujiraoka T. Characteristics of bipolar–bipolar coupling in the carp retina. Journal of General Physiology 1988; 91: 275–287
  • Sakaba T, Ishikane H, Tachibana M. Ca2+-activated K+ current at presynaptic terminals of goldfish retinal bipolar cells. Neuroscience Research 1997; 27: 219–228
  • Sakai H, Naka K. Signal transmission in the catfish retina. IV. Transmission to ganglion cells. Journal of Neurophysiology 1987; 58: 1307–1328
  • Schultz W. Predictive reward signal of dopamine neurons. Journal of Neurophysiology 1998; 80: 1–27
  • Schultz W, Dayan P, Montague P. A neural substrate of prediction and reward. Science 1997; 275: 1593–1599
  • Schwartz G, Berry II M. Sophisticated temporal pattern recognition in retinal ganglion cells. Journal of Neurophysiology 2008; 99: 1787–1798
  • Schwartz G, Harris R, Shrom D, Berry II M. Detection and prediction of periodic patterns by the retina. Nature Neuroscience 2007a; 10: 552–554
  • Schwartz G, Taylor S, Harris R, Berry II M. Synchronized firing among retinal ganglion cells signals motion reversal. Neuron 2007b; 55: 958–969
  • Segev R, Puchalla J, Berry II M. Functional organization of ganglion cells in the salamander retina. Journal of Neurophysiology 2006; 95: 2277–2292
  • Shapley R, Victor J. The contrast gain control of the cat retina. Vision Research 1979; 19: 431–434
  • Sutton S, Teuting P, Zubin J, John E. Information delivery and the sensory evoked potential. Science 1967; 155: 1436–1439
  • Umino O, Maehara M, Hidaka S, Kita S, Hashimoto Y. Electrical coupling between bipolar cells in the retina. Investigative Ophthalmology & Visual Science 1993; 34: 984
  • Wässle H, Boycott BB. Functional architecture of the mammalian retina. Physiological Reviews 1991; 71: 447–480
  • Wässle H, Riemann H. The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society of London [Biology] 1978; 200: 441–461
  • Werner B, Cook PB, Passaglia C. Complex temporal response patterns with a simple retinal circuit. Journal of Neurophysiology 2008; 100: 1087–1097
  • Wu S, Gao F, Maple B. Functional architecture of synapses in the inner retina: Segregation of visual signals by stratification of bipolar cell axon terminals. Journal of Neuroscience 2000; 20: 4462–4470
  • Zenisek D, Henry D, Studholme K, Yazulla S, Matthews G. Voltage-dependent sodium channels are expressed in nonspiking retinal bipolar neurons. Journal of Neuroscience 2001; 21: 4543–4550

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.