3,044
Views
0
CrossRef citations to date
0
Altmetric
Guest Editorial

The history and future of neural modeling for cochlear implants

&
Pages 53-66 | Received 04 Aug 2016, Accepted 08 Aug 2016, Published online: 11 Oct 2016

References

  • Black RC, Clark GM. 1980. Differential electrical excitation of the auditory nerve. J Acoust Soc Am 67:868–874.
  • Blamey PJ, Dickson B, Grant LM. 2004. An incremental excitation scale for cochlear implants. Acoust Res Lett Online 5:50–55.
  • Boulet J, White M, Bruce IC. 2016. Temporal considerations for stimulating spiral ganglion neurons with cochlear implants. J Assoc Res Otolaryngol 17(1):1–17.
  • Babacan O, Lai WK, Killian M, Dillier N. 2010. Implementation of a neurophysiologically-based coding strategy for the cochlear implant. 13. Jahrestagung der Deutschen Gesellschaft für Audiologie. DGA e.V., Frankfurt, pp. 1–4. ISBN 978-3-9813141-0-6.
  • Baumann U, Nobbe A. 2004. Pulse rate discrimination with deeply inserted electrode arrays. Hear Res 196:49–57.
  • Bierer JA, Faulkner KF, Tremblay KL. 2011. Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration. Ear Hear 32:436–444.
  • Bruce IC, White M, Irlicht LS, O’Leary SJ, Clark GM. 1999. The effects of stochastic neural activity in a model predicting intensity perception with cochlear implants: low-rate stimulation. IEEE Trans Biomed Eng 46(12):1393–1404.
  • Bruce IC, Irlicht LS, White M., O’Leary SJ, Clark GM. 2000. Renewal-process approximation of a stochastic threshold model for electrical neural stimulation. J Comput Neurosci 9(2):119–132.
  • Buechner A, Nogueira W, Edler B, Battmer RD, Lenarz T. 2008. Results from a psychoacoustic model-based strategy for the nucleus-24 and freedom cochlear implants. Otol Neurotol 29:189–192.
  • Chouard CH. 2015. The early days of the multi-channel cochlear implant: Efforts and achievement in France. Hear Res 322:47–51.
  • Churchill TH, Kan A, Goupell MJ, Litovsky RY. 2014. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners. J Acoust Soc Am 136:1246.
  • Clark GM. 2015. The multi-channel cochlear implant: multi-disciplinary development of electrical stimulation of the cochlea and the resulting clinical benefit. Hear Res 322:4–13.
  • Colburn HS, Chung Y, Zhou Y, Brughera A. 2009. Models of brainstem responses to bilateral electrical stimulation. J Assoc Res Otolaryngol 10:91–110.
  • Colombo J, Parkins CW. 1987. A model of electrical excitation of the mammalian auditory-nerve neuron. Hear Res 31(3):287–311.
  • Cohen LT. 2009a. Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current. Hear Res 247:87–91.
  • Cohen LT. 2009b. Practical model description of peripheral neural excitation in cochlear implant recipients: 2. Spread of the effective stimulation field (ESF), from ECAP and FEA. Hear Res 247:100–111.
  • Cohen LT. 2009c. Practical model description of peripheral neural excitation in cochlear implant recipients: 3. ECAP during bursts and loudness as function of burst duration. Hear Res 247:112–121.
  • Cohen LT. 2009d. Practical model description of peripheral neural excitation in cochlear implant recipients: 4. Model development at low pulse rates: general model and application to individuals. Hear Res 248:15–30.
  • Cohen LT. 2009e. Practical model description of peripheral neural excitation in cochlear implant recipients: 5. Refractory recovery and facilitation. Hear Res 248:1–14.
  • Culling JF, Jelfs S, Talbert A, Grange JA, Backhouse SS. 2012. The benefit of bilateral versus unilateral cochlear implantation to speech intelligibility in noise. Ear Hear 33:673–682.
  • DeVries L, Scheperle R, Bierer JA. 2016. Assessing the electrode-neuron interface with the electrically evoked compound action potential, electrode position, and behavioral thresholds. J Assoc Res Otolaryngol 17:237–252.
  • Dietz M. 2016. Models of the electrically stimulated binaural system: a review. Netw Comput Neural Syst [this issue]. doi: 10.1080/0954898X.2016.1219411
  • Eisenberg LS. 2015. The contributions of William F. House to the field of implantable auditory devices. Hear Res 322:52–56.
  • El Boghdady N, Kegel A, Lai WK, Dillier N. 2016. A neural-based vocoder implementation for evaluating cochlear implant coding strategies. Hear Res 333:136–149.
  • Firszt JB, Reeder RM, Skinner MW. 2008. Restoring hearing symmetry with two cochlear implants or one cochlear implant and a contralateral hearing aid. J Rehabil Res Dev 45:749–768.
  • Fredelake S, Hohmann V. 2012. Factors affecting predicted speech intelligibility with cochlear implants in an auditory model for electrical stimulation. Hear Res 287:76–90.
  • Frijns JH, Briaire JJ, Grote JJ. 2001. The importance of human cochlear anatomy for the results of modiolus-hugging multichannel cochlear implants. Otol Neurotol 22:340–349.
  • Frijns JH, de Snoo SL, ten Kate JH. 1996. Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res 95:33–48.
  • Frijns JH, Dekker DM, Briaire JJ. 2011. Neural excitation patterns induced by phased-array stimulation in the implanted human cochlea. Acta Otolaryngol 131:362–370.
  • Goldwyn JH, Bierer SM, Bierer JA. 2010a. Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration. Hear Res 268:93–104.
  • Goldwyn JH, Shea-Brown E, Rubinstein JT. 2010b. Encoding and decoding amplitude-modulated cochlear implant stimuli—a point process analysis. J Comput Neurosci 28:405–424.
  • Groff JR, DeRemigio H, Smith GD. 2009. Markov chain models of ion channels and calcium release sites. In: Laing C and Lord GJ, editors. Stochastic methods in neuroscience. New York (NY): Oxford University Press; p. 29–64.
  • Hamacher V. 2004. Signalverarbeitungsmodelle des gestörten Gehörs. Doctoral Dissertation, RWTH Aachen, Aachen.
  • Hanekom T. 2001. Three-dimensional spiraling finite element model of the electrically stimulated cochlea. Ear Hear 22:300–315.
  • Hanekom T, Hanekom JJ. 2016. Three-dimensional models of cochlear implants: a review of their development and how they could support management and maintenance of cochlear implant performance. Netw Comput Neural Syst [this issue]. doi: 10.3109/0954898X.2016.1171411
  • Harczos T, Chilian A, Husar P. 2013. Making use of auditory models for better mimicking of normal hearing processes with cochlear implants: The SAM coding strategy. IEEE Trans Biomed Circ Syst 7:414–425.
  • Hill AV. 1936. Excitation and accommodation in nerve. Proc R Soc B 119:305–355.
  • Hochmair-Desoyer IJ, Hochmair ES, Motz H, Rattay F. 1984. A model for the electrostimulation of the nervus acusticus. Neurosci 3(2):553–562.
  • Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544.
  • Hoesel RJMv, Tyler RS. 2003. Speech perception, localization, and lateralization with bilateral cochlear implants. J Acoust Soc Am 113:1617–1630.
  • Horne CD, Sumner CJ, Seeber BU. 2016. A phenomenological model of the electrically stimulated auditory nerve fiber: temporal and biphasic response properties. Front Comput Neurosci 10:8.
  • Kalkman RK, Briaire JJ, Frijns JH. 2016. Stimulation strategies and electrode design in computational models of the electrically stimulated cochlea: an overview of existing literature. Netw Comput Neural Syst [this issue]. doi: 10.3109/0954898X.2016.1171412
  • Kelvasa D, Dietz M. 2015. Auditory model-based sound direction estimation based sound direction estimation with bilateral cochlear implants. Trends Hear 19:1–16.
  • Kiang NY-S. 1965. Stimulus coding in the auditory nerve and cochlear nucleus. Acta Oto-Laryngol 59(2–6):186–200.
  • Kiang NY-S, Moxon EC. 1972. Physiological considerations in artificial stimulation of the inner ear. Ann Otol 81:714–730.
  • Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG, Bamann C, Bamberg E. 2011. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat Neurosci 14(4):513–518.
  • Laback B, Egger K, Majdak P. 2015. Perception and coding of interaural time differences with bilateral cochlear implants. Hear Res 322:138–150.
  • Lapicque L. 1907. Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarization. J Physiol Pathol Gen 9:620–635.
  • Litvak LM, Spahr AJ, Emadi G. 2007. Loudness growth observed under partially tripolar stimulation: model and data from cochlear implant listeners. J Acoust Soc Am 122(2):967–981.
  • Macherey O, van Wieringen A, Carlyon RP, Deeks JM, Wouters J. 2006. Asymmetric pulses in cochlear implants: effects of pulse shape, polarity, and rate. J Assoc Res Otolaryngol 7:253–266.
  • Malherbe TK, Hanekom T, Hanekom JJ. 2015a. Constructing a three-dimensional electrical model of a living cochlear implant user’s cochlea. Int J Numer Method Biomed Eng 32(7). doi: 10.1002/cnm.2751.
  • Malherbe TK, Hanekom T, Hanekom JJ. 2015b. The effect of the resistive properties of bone on neural excitation and electric fields in cochlear implant models. Hear Res 327:126–135.
  • McKay CM, McDermott H. 1998. Loudness perception with pulsatile electrical stimulation: the effect of interpulse intervals. J Acoust Soc Am 104:1061–1074.
  • McKay CM, Remine MD, McDermott H. 2001. Loudness summation for pulsatile electrical stimulation of the cochlea: effects of rate, electrode separation, level, and mode of stimulation. J Acoust Soc Am 110:1514–1524.
  • Merzenich MM. 2015. Early UCSF contributions to the development of multiple-channel cochlear implants. Hear Res 322:39–46.
  • Monaghan JJM, Seeber BU. 2016. A method to enhance the use of interaural time differences for cochlear implants in reverberant environments. J Acoust Soc Am 140(2):1116–1129.
  • Morse RP, Evans EF. 1999. Additive noise can enhance temporal coding in a computational model of analogue cochlear implant stimulation. Hear Res 133:107–119.
  • Negm MH, Bruce IC. 2014. The effects of HCN and KLT ion channels on adaptation and refractoriness in a stochastic auditory nerve model. IEEE Trans Biomed Eng 61:2749–2759.
  • Nie K, Stickney G, Zeng FG. 2005. Encoding frequency modulation to improve cochlear implant performance in noise. IEEE Trans Biomed Eng 52:64–73.
  • Nogueira W, Büchner A, Lenarz T, Edler B. 2005. A psychoacoustic NofM-type speech coding strategy for cochlear implants. EURASIP J Appl Signal Process 2005:3044–3059.
  • O’Brien GE, Imennov NS, Rubinstein JT. 2016. Simulating electrical modulation detection thresholds using a biophysical model of the auditory nerve. J Acoust Soc Am 139:2448–2462.
  • O’Brien GE, Rubinstein JT. 2016. The development of biophysical models of the electrically stimulated auditory nerve: single-node and cable models. Netw Comput Neural Syst: 1–22. [this issue]. doi: 10.3109/0954898X.2016.1162338
  • Parkins CW, Colombo J. 1987. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes. Hear Res 31:267–285.
  • Rose JE, Brugge JF, Anderson DJ, Hind JE. 1967. Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30(4):769–793.
  • Saeedi NE, Blamey PJ, Burkitt AN, Grayden DB. 2014. Application of a pitch perception model to investigate the effect of stimulation field spread on the pitch ranking abilities of cochlear implant recipients. Hear Res 316:129–137.
  • Seeber B, Fastl H. 2008. Localization cues with bilateral cochlear implants. J Acoust Soc Am 123:1030–1042.
  • Smith ZM, Parkinson WS, Krishnamoorthi H. 2013. Efficient coding for auditory prostheses. In Conference on Implantable Auditory Prostheses, CIAP; 2013 Jul 14–19; Lake Tahoe, CA, USA.
  • Snel-Bongers J, Briaire JJ, van der Veen EH, Kalkman RK, Frijns JH. 2013. Threshold levels of dual electrode stimulation in cochlear implants. J Assoc Res Otolaryngol 14:781–790.
  • Takanen M, Bruce I, Seeber B. 2016. Phenomenological modelling of electrically stimulated auditory nerve fibers: a review. Netw Comput Neural Syst [this issue]. doi: 10.1080/0954898X.2016.1219412
  • Weiss G. 1901. Sur la possibilité de rendre comparables entre eux les appareils servant a l’excitation électrique. Arch Ital Biol 35:413–446.
  • Weiss RS, Voss A, Hemmert W. 2016. Optogenetic stimulation of the cochlea—a review of mechanisms, measurements and first models. Netw Comput Neural Syst [this issue]. doi: 10.1080/0954898X.2016.1224944
  • White MW. 1978. Design considerations of a prosthesis for the profoundly deaf. [Ph.D. dissertation]. [Berkeley (CA)]: University of California Berkeley.
  • White MW, Merzenich MM, Gardi JN. 1984. Multichannel cochlear implants: channel interactions and processor design. Arch Otolaryngol 110(8):493–501.
  • Wilson BS, Schatzer R, Lopez-Poveda EA, Sun X, Lawson DT, Wolford RD. 2005. Two new directions in speech processor design for cochlear implants. Ear Hear 26:73S–81S.
  • Wong P, George S, Tran P, Sue A, Carter P, Li Q. 2016. Development and validation of a high-fidelity finite-element model of monopolar stimulation in the implanted guinea pig cochlea. IEEE Trans Biomed Eng 63:188–198.
  • Xu Y, Collins LM. 2003. Predicting the threshold of single-pulse electrical stimuli using a stochastic auditory nerve model: the effects of noise. IEEE Trans Biomed Eng 50(7):825–835.
  • Xu Y, Collins LM. 2004. Predicting the threshold of noise-modulated pulse train stimuli using a stochastic auditory nerve model: the effects of stimulus noise. IEEE Trans Biomed Eng 51(4):590–603.
  • Xu Y, Collins LM. 2005. Theoretical prediction of dynamic range and intensity discrimination for electrical noise-modulated pulse-train stimuli. IEEE Trans Biomed Eng 52(6):1040–1049.
  • Xu Y, Collins LM. 2007. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model. IEEE Trans Biomed Eng 54(8):1389–1398.
  • Zeng F-G, Shannon RV. 1994. Loudness-coding mechanisms inferred from electric stimulation of the human auditory system. Science 264(5158):564–566.
  • Zierhofer C. 2001. Electrical nerve stimulation based on channel-specific sequences. World Patent WO 01/13991 A1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.