3,545
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Optogenetic stimulation of the cochlea—A review of mechanisms, measurements, and first models

, &
Pages 212-236 | Received 04 Jul 2016, Accepted 11 Aug 2016, Published online: 20 Sep 2016

References

  • Abilez OJ, Wong J, Prakash R, Deisseroth K, Zarins CK, Kuhl E. 2011. Multiscale computational models for optogenetic control of cardiac function. Biophys J. 101(6):1326–1334. doi:10.1016/j.bpj.2011.08.004
  • Albert ES, Bec JM, Desmadryl G, Chekroud K, Travo C, Gaboyard S, Bardin F, Marc I, Dumas M, Lenaers G, Hamel C, Muller A, Chabbert C. 2012. TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J Neurophysiol. 107(12):3227–3234. doi:10.1152/jn.00424.2011.
  • Aravanis AM, Wang L-P, Zhang F, Meltzer LA, Mogri MZ, Bret Schneider M, Deisseroth K. 2007. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neur Eng. 4(3):S143–S156. doi: 10.1088/1741-2560/4/3/S02.
  • Arlow RL, Foutz TJ, McIntyre CC. 2013. Theoretical principles underlying optical stimulation of myelinated axons expressing channelrhodopsin-2. Neuroscience. 248(0):541–551. doi:10.1016/j.neuroscience.2013.06.031.
  • Arora K. 2012. Cochlear implant stimulation rates and speech perception. In: Ramakrishnan S, editor. Modern speech recognition approaches with case studies. InTech. doi: 10.5772/49992.
  • Bamann C, Nagel G, Bamberg E. 2010. Microbial rhodopsins in the spotlight. Curr Opin Neurobiol. 20(5):610–616. doi: 10.1016/j.conb.2010.07.003.
  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 8(9):1263–1268. doi: 10.1038/nn1525. URL http://dx.doi.org/10.1038/nn1525.
  • Bruce IC, Irlicht LS, White MW, O’Leary SJ, Dynes S, Javel E, Clark GM. 1999b. A stochastic model of the electrically stimulated auditory nerve: pulse-train response. Biomed Eng IEEE Trans. 46(6):630–637. doi: 10.1109/10.764939.
  • Bruce IC, White MW, Irlicht LS, O’Leary SJ, Dynes S, Javel E, Clark GM. 1999a. A stochastic model of the electrically stimulated auditory nerve: single-pulse response. Biomed. Eng. IEEE Trans. 46(6):617–629. doi: 10.1109/10.764938.
  • Buchegger W, Rosenauer M, Vellekoop MJ. 2009. Microfluidic measurement system for fluorescent particles with three-dimensional sheath flow and a self-aligned adjustable microlens. Proc Chem. 1(1):1123–1126. doi: 10.1016/j.proche.2009.07.280.
  • Callaway EM, Yuste R. 2002. Stimulating neurons with light. Curr Opin Neurobiol. 12(5):587–592. doi: 10.1016/S0959-4388(02)00364-1. URL http://www.sciencedirect.com/science/article/pii/S0959438802003641.
  • Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai L-H, Moore CI. 2010. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of channelrhodopsin-2. Nat Protoc. 5(2):247–254. doi: 10.1038/nprot.2009.228.
  • Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A, Schnitzer MJ. 2006. Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci. 26(41):10380–10386. doi: 10.1523/JNEUROSCI.3863-06.2006.
  • Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. 2014. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev. 114 (1):126–163. doi: 10.1021/cr4003769.
  • Flock ST, Wilson BC, Patterson MS. 1989. Monte Carlo modeling of light propagation in highly scattering tissues. II. Comparison with measurements in phantoms. IEEE Trans Biomed Eng. 36(12):1169–1173. doi: 10.1109/10.42107.
  • Fork RL. 1971. Laser stimulation of nerve cells in aplysia. Science. 171(3974): 907–908. doi: 10.1126/science.171.3974.907.
  • Foutz TJ, Arlow RL, McIntyre CC. 2012. Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron. J Neurophysiol. 107(12):3235–3245. doi: 10.1152/jn.00501.2011.
  • Friesen LM, Shannon RV, Baskent D, Wang X. 2001. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am. 110(2):1150. doi: 10.1121/1.1381538.
  • Frijns JHM, de Snoo SL, and Schoonhoven R. 1995. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res. 87(1–2):170–186. doi: 10.1016/0378-5955(95)00090-Q.
  • Fu QJ, Shannon RV. 2000. Effect of stimulation rate on phoneme recognition by nucleus-22 cochlear implant listeners. J Acoust Soc Am. 107(1):589–597.
  • Goßler C, Bierbrauer C, Moser R, Kunzer M, Holc K, Pletschen W, Köhler K, Wagner J, Schwaerzle M, Ruther P, Paul O, Neef J, Keppeler D, Hoch G, Moser T, Schwarz UT. 2014. GaN-based micro-LED arrays on flexible substrates for optical cochlear implants. J Phys D: Appl Phys. 47(20):05401. doi: 10.1088/0022-3727/47/20/205401.
  • Goodman DFM, Brette R. 2009. The brian simulator. Front Neurosci. 3(2):192–197. doi: 10.3389/neuro.01.026.2009.
  • Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. 2009. Optical deconstruction of Parkinsonian neural circuitry. Science. 324(5925):354–359. doi: 10.1126/science.1167093.
  • Grossman N, Nikolic K, Toumazou C, Degenaar P. 2011. Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. Biomed Eng IEEE Trans. 58(6):1742–1751. doi: 10.1109/TBME.2011.2114883.
  • Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P. 2010. Ultrafast optogenetic control. Nat Neurosci. 13(3):387–392. doi: 10.1038/nn.2495. URL http://dx.doi.org/10.1038/nn.2495.
  • Guo W, Hight AE, Chen JX, Klapoetke NC, Hancock KE, Shinn-Cunningham BG, Boyden ES, Lee DJ, Polley DB. 2015. Hearing the light: neural and perceptual encoding of optogenetic stimulation in the central auditory pathway. Sci Rep. 5:10319. doi: 10.1038/srep10319.
  • Hegemann P, Ehlenbeck S, Gradmann D. 2005. Multiple photocycles of channelrhodopsin. Biophys J. 89(6):3911–3918. doi: 10.1529/biophysj.105.069716.
  • Hernandez VH, Gehrt A, Jing Z, Hoch G, Jeschke MC, Strenzke N, Moser T. 2014a. Optogenetic stimulation of the auditory nerve. J Visual Exp. (92):e52069. doi: 10.3791/52069.
  • Hernandez VH, Gehrt A, Reuter K, Jing Z, Jeschke M, Mendoza Schulz A, Hoch G, Bartels M, Vogt G, Garnham CW, Yawo H, Fukazawa Y, Augustine GJ, Bamberg E, Kügler S, Salditt T, de Hoz L, Strenzke N, Moser T. 2014b. Optogenetic stimulation of the auditory pathway. J Clin Invest. 124(3):1114–1129. doi: 10.1172/JCI69050.
  • Hight AE, Kozin ED, Darrow K, Lehmann A, Boyden E, Brown MC, Lee DJ. 2015. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant. Hear Res. doi: 10.1016/j.heares.2015.01.004.
  • Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 117(4):500.
  • Huber D, Petreanu L, Ghitani N, Ranade S, Hromádka T, Mainen Z, Svoboda K. 2008. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451(7174):61–64. doi: 10.1038/nature06445.
  • Ivanova E, Pan Z-H. 2009. Evaluation of the adeno-associated virus mediated long-term expression of channelrhodopsin-2 in the mouse retina. Mol Vision 15:1680–1689.
  • Ivanova E, Roberts R, Bissig D, Pan Z-H, Berkowitz BA. 2010. Retinal channelrhodopsin-2-mediated activity in vivo evaluated with manganese-enhanced magnetic resonance imaging. Mol Vision. 16:1059–1067.
  • Izzo AD, Richter C-P, Jansen ED, Walsh JT. 2006. Laser stimulation of the auditory nerve. Lasers Surg Med. 38(8):745–753. doi: 10.1002/lsm.20358.
  • Jeschke M, Moser T. 2015. Considering optogenetic stimulation for cochlear implants. Hear Res. 322:224–234. doi: 10.1016/j.heares.2015.01.005.
  • Kühne W, Foster M. 1878. On the photochemistry of the retina and on visual purple. London: Macmillan and Co.
  • Kasahara D, Morita D, Kosugi T, Nakagawa K, Kawamata J, Higuchi Y, Matsumura H, and Mukai T. 2011. Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature. Appl Phys Exp. 4(7):072103. doi: 10.1143/APEX.4.072103.
  • Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deisseroth K, Nureki O. 2012. Crystal structure of the channelrhodopsin light-gated cation channel. Nature. 482(7385):369–374. doi: 10.1038/nature10870.
  • Kiang NY-S. 1965. Stimulus coding in the auditory nerve and cochlear nucleus. Acta oto-laryngologica. 59(2–6):186–200. doi: 10.3109/00016486509124552.
  • Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK-S, Boyden ES. 2014. Independent optical excitation of distinct neural populations. Nat Methods. 11(3):338–346. doi: 10.1038/nmeth.2836.
  • Kleinlogel S, Feldbauer F, Dempski RE, Fotis H, Wood PG, Bamann C, Bamberg E. 2011. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat Neurosci. 14(4):513–518. doi: 10.1038/nn.2776.
  • Kubelka P, Munk F. 1931. Ein Beitrag zur Optik der Farbanstriche. Z. Tech. Phys. Leipzig(12):593–601.
  • Kuhne J, Eisenhauer K, Ritter E, Hegemann P, Gerwert K, Bartl F. 2015. Early formation of the ion-conducting pore in channelrhodopsin-2. Ange Chem (International ed. in English). 54(16):4953–4957. doi: 10.1002/anie.201410180.
  • Kwon KY, Khomenko A, Haq M, and Li W. 2013. Integrated slanted microneedle-LED array for optogenetics. Conf Proc. Ann Int Conf IEEE Eng Med and Biol Soc. IEEE Eng Med Biol Soc. Ann Conf. 249–252. doi: 10.1109/EMBC.2013.6609484.
  • Lagali PS, Balya D, Awatramani GB, Munch TA, Kim DS, Busskamp V, Cepko CL, Roska B. 2008. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci. 11(6):667–675. doi: 10.1038/nn.2117.
  • Lawlor PA, Bland RJ, Mouravlev A, Young D, During MJ. 2009. Efficient gene delivery and selective transduction of glial cells in the mammalian brain by AAV serotypes isolated from nonhuman primates. Mol Ther: J Am Soc Gene Ther. 17(10):1692–1702. doi: 10.1038/mt.2009.170.
  • Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I, Kim D-S, Fenno LE, Ramakrishnan C, Deisseroth K. 2010. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature. 465(7299):788–792. doi: 10.1038/nature09108.
  • Liewald JF, Brauner M, Stephens GJ, Bouhours M, Schultheis C, Zhen M, Gottschalk A. 2008. Optogenetic analysis of synaptic function. Nat Meth. 5(10):895–902. doi: 10.1038/nmeth.1252.
  • Lin JY, Lin MZ, Steinbach P, Tsien RY. 2009. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J. 96(5):1803–1814. doi: 10.1016/j.bpj.2008.11.034.
  • Lu T-C, Chen J-R, Chen S-W, Kuo H-C, Kuo C-C, Lee C-C, Wang S-C. 2009. Development of GaN-based vertical-cavity surface-emitting lasers. IEEE J Select Topics Quant Electr. 15(3):850–860. doi: 10.1109/JSTQE.2009.2013181.
  • Müller M, Bamann C, Bamberg E, Kühlbrandt W. 2011. Projection structure of channelrhodopsin-2 at 6 Å resolution by electron crystallography. J Mol Biol. 414(1):86–95. doi: 10.1016/j.jmb.2011.09.049.
  • Mahn M, Prigge M, Ron S, Levy R, Yizhar O. 2016. Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat neurosci. 19(4):554–556. doi: 10.1038/nn.4266.
  • Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O’Shea DJ, Prakash R, Gunaydin LA, Hyun M, Fenno LE, Gradinaru V, Yizhar O, Deisseroth K. 2012. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods. 9(2):159–172. doi: 10.1038/nmeth.1808.
  • McDermott HJ. 2004. Music perception with cochlear implants: a review. Trend Amplification. 8(2):49–82. doi: 10.1177/108471380400800203.
  • McNeal DR. 1976. Analysis of a model for excitation of myelinated nerve: biomedical engineering, IEEE transactions on. Biomed Eng IEEE Trans. BME-23(4):329–337. doi: 10.1109/TBME.1976.324593.
  • Meng X, Kozin E, Li GQ, Anne Eatock R, Lee DJ, Edge A. 2014. Adeno-associated virus vector delivery of channelrhodopsin-2 into spiral ganglion neurons. In: Rubinstein JT, editor. Proceedings of the 37th annual midwinter meeting. Association For Research In Otolaryngology. p. 169.
  • Mingozzi F, High KA. 2013. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 122(1):23–36. doi: 10.1182/blood-2013-01-306647.
  • Moser T. 2015. Optogenetic stimulation of the auditory pathway for research and future prosthetics. Curr Opin Neurobiol. 34:29–36. doi: 10.1016/j.conb.2015.01.004.
  • Nadol Jr. JB, Eddington DK. 2004. Histologic evaluation of the tissue seal and biologic response around cochlear implant electrodes in the human. Otol Neurotol. 25(3). URL http://journals.lww.com/otology-neurotology/Fulltext/2004/05000/Histologic_Evaluation_of_the_Tissue_Seal_and.10.aspx.
  • Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A. 2005. Light activation of channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses. Curr Biol. 15(24):2279–2284. doi: 10.1016/j.cub.2005.11.032.
  • Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P. 2002. Channelrhodopsin-1: a light-gated proton channel in green algae. Sci (New York, N.Y.). 296(5577):2395–2398. doi: 10.1126/science.1072068.
  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E. 2003. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci. 100(24): 13940–13945. doi: 10.1073/pnas.1936192100.
  • Nicoletti M, Wirtz C, Hemmert W. 2013. Modeling sound localization with cochlear implants. In: Blauert J, editor. The technology of binaural listening. Berlin, Heidelberg: Springer, p. 309–331. doi: 10.1007/978-3-642-37762-4_12.
  • Nikolenko V, Watson BO, Araya R, Woodruff A, Peterka DS, Yuste R. 2008. SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front Neural Circ. 2:5. doi: 10.3389/neuro.04.005.2008.
  • Nikolic K, Grossman N, Grubb MS, Burrone J, Toumazou C, Degenaar P. 2009. Photocycles of Channelrhodopsin-2. Photochem and Photobiol. 85(1):400–411. doi: 10.1111/j.1751-1097.2008.00460.x.
  • Pashaie R, Baumgartner R, Richner TJ, Brodnick SK, Azimipour M, Eliceiri KW, Williams JC. 2015. Closed-loop optogenetic brain interface. IEEE Trans Biomed Eng. 62(10):2327–2337. doi: 10.1109/TBME.2015.2436817.
  • Pisanello F, Sileo L, Oldenburg IA, Pisanello M, Martiradonna L, Assad JA, Sabatini BL, de Vittorio M. 2014. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics. Neuron. 82(6):1245–1254. doi: 10.1016/j.neuron.2014.04.041.
  • Rattay F, Lutter P, Felix H. 2001. A model of the electrically excited human cochlear neuron: I. Contribution of neural substructures to the generation and propagation of spikes. Hear Res. 153(1–2):43–63. doi: 10.1016/S0378-5955(00)00256-2.
  • Rudnicki M, Schoppe O, Isik M, Völk F, Hemmert W. 2015. Modeling auditory coding: from sound to spikes. Cell Tissue Res. 361(1):159–175. doi: 10.1007/s00441-015-2202-z.
  • Scharf R, Tsunematsu T, McAlinden N, Dawson MD, Sakata S, Mathieson K. 2016. Depth-specific optogenetic control in vivo with a scalable, high-density muLED neural probe. Sci Rep. 6:28381. doi: 10.1038/srep28381.
  • Schoenenberger P, Grunditz Å, Rose T, Oertner TG. 2008. Optimizing the spatial resolution of channelrhodopsin-2 activation. Brain Cell Bio. 36(1–4):119–127. doi: 10.1007/s11068-008-9025-8.
  • Shannon RV, Zeng F-G, Kamath V, Wygonski J, Ekelid M. 1995. Speech recognition with primarily temporal cues. Science. 270(5234):303–304. doi: 10.1126/science.270.5234.303.
  • Shapiro MG, Homma K, Villarreal S, Richter C-P, Bezanilla F. 2012. Infrared light excites cells by changing their electrical capacitance. Nat Commun. 3:736. doi:10.1038/ncomms1742.
  • Shepherd J, Wicke P. 1997. Music and cultural theory. Cambridge, UK, and Malden, MA: Polity Press, and Published in the USA by Blackwell.
  • Stefanescu RA, Shivakeshavan RG, Khargonekar PP, Talathi SS. 2013. Computational modeling of channelrhodopsin-2 photocurrent characteristics in relation to neural signaling: bulletin of mathematical biology. Bull Math Biol. 75(11):2208–2240. doi: 10.1007/s11538-013-9888-4.
  • Stehfest K, Hegemann P. 2010. Evolution of the channelrhodopsin photocycle model. Chemphyschem: Eur J Chem Phys Phys Chem. 11(6):1120–1126. doi: 10.1002/cphc.200900980.
  • Teudt IU, Maier H, Richter C-P, Kral A. 2011. Acoustic events and “optophonic”cochlear responses induced by pulsed near-infrared laser. IEEE Trans Bio-med Eng. 58(6): 1648–1655. doi: 10.1109/TBME.2011.2108297.
  • Thompson AC, Fallon JB, Wise AK, Wade SA, Shepherd RK, Stoddart PR. 2015. Infrared neural stimulation fails to evoke neural activity in the deaf guinea pig cochlea. Hear Res. 324:46–53. doi: 10.1016/j.heares.2015.03.005.
  • Tye KM, Deisseroth K. 2012. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci. 13(4):251–266. doi: 10.1038/nrn3171.
  • Vo-Dinh T. 2003. Biomedical photonics handbook. Boca Raton, Fla: CRC Press.
  • Wang Q, Yang H, Agrawal A, Wang NS, and Pfefer TJ. 2008. Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system. Opt Exp. 16(12):8685. doi: 10.1364/OE.16.008685.
  • Williams JC, Xu J, Lu Z, Klimas A, Chen X, Ambrosi CM, Cohen IS, Entcheva E, Alber MS. 2013. Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model. PLoS Comput Biol. 9(9): e1003220. doi: 10.1371/journal.pcbi.1003220.
  • Yates GK. 1990. Basilar membrane nonlinearity and its influence on auditory nerve rate-intensity functions. Hear Res. 50(1–2):145–162. doi: 10.1016/0378-5955(90)90041-M.
  • Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. 2011. Optogenetics in neural systems. Neuron. 71(1):9–34.
  • Zeng F-G, Grant G, Niparko J, Galvin J, Shannon R, Opie J, Segel P. 2002. Speech dynamic range and its effect on cochlear implant performance. J Acoust Soc Am. 111(1):377. doi: 10.1121/1.1423926.
  • Zhang F, Wang L-P, Boyden ES, Deisseroth K. 2006. Channelrhodopsin-2 and optical control of excitable cells. Nat Methods. 3(10):785–792. doi: 10.1038/NMETH936.
  • Zirn S, Polterauer D, Keller S, Hemmert W. 2016. The effect of fluctuating maskers on speech understanding of high-performing cochlear implant users. Int J Audiol. 55(5):295–304. doi: 10.3109/14992027.2015.1128124.