91
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Neural decoding of inferior colliculus multiunit activity for sound category identification with temporal correlation and transfer learning

&
Pages 101-133 | Received 01 Jun 2023, Accepted 07 Nov 2023, Published online: 20 Nov 2023

References

  • Akbari H, Khalighinejad B, Herrero JL, Mehta AD, Mesgarani N. 2019. Towards reconstructing intelligible speech from the human auditory cortex. Sci Rep. 9(1). doi: 10.1038/s41598-018-37359-z.
  • Attias H, Schreiner CE. 1998. Coding of Naturalistic Stimuli by Auditory Midbrain Neurons. University of California at San Francisco.
  • Bear MF, Connors BW, Paradiso MA, Mondiale LR. 2016. NEUROSCIENCES à la découverte du cerveau Traduction et adaptation André Nieoullon. France.
  • Buzsáki G, Tingley D. 2018. Space and time: the hippocampus as a sequence generator. Trends Cogn Sci. 22(10):853–869. doi: 10.1016/j.tics.2018.07.006.
  • Casseday JH, Schreiner CE, Winer JA. 2005. The inferior colliculus: past, present, and future. In: The inferior colliculus. New York: Springer; p. 626–640.
  • Cazala A. 2020. Codage neuronal de l’ordre des signaux acoustiques dans les chants des oiseaux. https://tel.archives-ouvertes.fr/tel-02496165.
  • Chen C, Read HL, Escabí MA. 2012. Precise feature based time scales and frequency decorrelation lead to a sparse auditory code. J Neurosci. 32(25):8454–8468. doi: 10.1523/JNEUROSCI.6506-11.2012.
  • Dash D, Ferrari P, Wang J. 2020. Decoding imagined and spoken phrases from non-invasive neural (MEG) signals. Front Neurosci. 14. doi: 10.3389/fnins.2020.00290.
  • Delignières D. 2007. Analyse des séries temporelles .
  • Driscoll ME, Tadi P. 2022. Neuroanatomy, inferior colliculus - abstract - Europe PMC. StatPearls StatPearls Publishing, Treasure Island (FL). [accessed 2022 Dec 21]. https://europepmc.org/article/MED/32119355.
  • Du X, Sun Y, Song Y, Sun H, Yang L. 2023. A comparative study of different CNN models and transfer learning effect for underwater object classification in side-scan sonar images. Remote Sens (Basel). 15(3):593. doi: 10.3390/rs15030593.
  • Faisal A, Nora A, Seol J, Renvall H, Salmelin R. 2015. Kernel convolution model for decoding sounds from time-varying neural responses. Proceedings of the 2015 International Workshop on Pattern Recognition in NeuroImaging, PRNI 2015; USA. Institute of Electrical and Electronics Engineers Inc. p. 49–52.
  • Fakı BM. 2015. Veri Madenciliği Yöntemlerini Kullanarak Anemi Sınıflandırmasına Yönelik Bir Uygulama. Istanbul Teknik Üniversitesi.
  • Gervain J, Werker JF, Geffen MN. 2014. Category-specific processing of scale-invariant sounds in infancy. PloS One. 12(5):e96278. doi: 10.1371/journal.
  • Glaser JI, Benjamin AS, Chowdhury RH, Perich MG, Miller LE, Kording KP. 2020. Machine learning for neural decoding. eNeuro. 7(4):1–16. doi: 10.1523/ENEURO.0506-19.2020.
  • Heelan C, Lee J, O’Shea R, Lynch L, Brandman D M, Truccolo W and Nurmikko A V. 2019. Decoding speech from spike-based neural population recordings in secondary auditory cortex of non-human primates. Commun Biol. 2(1). doi: 10.1038/s42003-019-0707-9.
  • Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. 2017. Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5mb model size. https://github.com/DeepScale/SqueezeNet.
  • Kraus N, Skoe E, Parbery-Clark A, Ashley R. 2009. Experience-induced malleability in neural encoding of pitch, timbre, and timing: implications for language and music. In: Annals of the New York Academy of Sciences. Vol. 1169. Blackwell Publishing Inc; pp. 543–557.
  • Lee Y, Nam S. 2021. Performance comparisons of alexnet and googlenet in cell growth inhibition ic50 prediction. Int J Mol Sci. 22(14): doi: 10.3390/ijms22147721.
  • Lesica NA, Grothe B. 2008. Efficient temporal processing of naturalistic sounds. PloS One. 3(2):e1655. doi: 10.1371/journal.pone.0001655.
  • Levy A. 2018. Machine learning for neural coding of sound Envelopes: slithering from sinusoids to speech [PhD thesis]. University of Nottingham.
  • Livezey JA, Glaser JI. 2020. Deep learning approaches for neural decoding: from CNNs to LSTMs and spikes to fMRI. http://arxiv.org/abs/2005.09687.
  • Lu T, Han B, Yu F. 2021. Detection and classification of marine mammal sounds using AlexNet with transfer learning. Ecol Inform. 62. doi: 10.1016/j.ecoinf.2021.101277.
  • Mackey AC, Mayfield J, Ramachandran R, Mackey CA, Dylla M, Bohlen P, Hrnicek A. 2022. Hierarchical differences in the encoding of sound and choice in the subcortical auditory system.Preprint. https://www.researchgate.net/publication/361568026
  • Mathworks. 2021. Fitckernel. https://fr.mathworks.com/help/stats/fitckernel.html.
  • Matlab. 2022. Deep learning. Transfer Learning.
  • Matlab. 2022. Deep Learning, Transfer Learning.
  • Méndez CA, Celeghin A, Diano M, Orsenigo D, Ocak B, Tamietto M. 2022. A deep neural network model of the primate superior colliculus for emotion recognition. Phil Trans R Soc B. 377(1863): doi: 10.1098/rstb.2021.0512.
  • Moses DA, Leonard MK, Makin JG, Chang EF. 2019. Real-time decoding of question-and-answer speech dialogue using human cortical activity. Nat Commun. 10(1): doi: 10.1038/s41467-019-10994-4.
  • Natan RG, Carruthers IM, Mwilambwe-Tshilobo L, Geffen MN. 2017. Gain control in the auditory cortex evoked by changing temporal correlation of sounds. Cereb Cortex. 27(3):2385–2402. doi: 10.1093/cercor/bhw083.
  • Nelson PC, Carney LH. 2007. Neural rate and timing cues for detection and discrimination of amplitude-modulated tones in the awake rabbit inferior colliculus. J Neurophysiol. 97(1):522–539. doi: 10.1152/jn.00776.2006.
  • Özcan F, Alkan A. 2021. Frontal cortex neuron type classification with deep learning and recurrence plot. France: Traitement du Signal.
  • Putri DA, Kristiyanti DA, Indrayuni E, Nurhadi A, Hadinata DR. 2020. Comparison of Naive Bayes algorithm and support vector machine using PSO feature selection for Sentiment analysis on E-Wallet review. Proceedings of the International Conference on Advanced Information Scientific Development (ICAISD); Aug 6-7; West Java, Indonesia. (Vol. 1641).
  • Reddy KJ, Ganapathy S, Kothinti S, Slaney M. 2020. Deep canonical correlation analysis for decoding the auditory brain. Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); Montreal, QC, Canada. p. 3505–3508.
  • Richard D, Camps JF, Eugene D, Gauthier M, Gioanni Y. 2019. Le cours de neurosciences.
  • Saari P, Burunat I, Brattico E, Toiviainen P. 2018. Decoding musical training from dynamic processing of musical features in the brain. Sci Rep. 8(1): doi: 10.1038/s41598-018-19177-5.
  • Sadeghi M, Zhai X, Stevenson IH, Escabi MA. 2019. Dataset: multi-site neural recordings in the auditory midbrain of unanesthetized rabbits listening natural texture sounds and sound correlation auditory models.
  • Sadeghi M, Zhai X, Stevenson IH, Escabi MA. 2019. A neural ensemble correlation code for sound category identification. PLoS Biol. 17(10):e3000449. doi: 10.1371/journal.pbio.3000449.
  • Schnupp JWH, Garcia-Lazaro JA, Lesica NA. 2015. Periodotopy in the gerbil inferior colliculus: local clustering rather than a gradient map. Front Neural Circuits. 9(August). doi: 10.3389/fncir.2015.00037.
  • Schnupp J, Nelken I, King AJ. 2011. Auditory neuroscience: making sense of sound. London, England: The MIT Press.
  • Sharon RA, Narayanan SS, Sur M, Hema Murthy A. 2020. Neural speech decoding during audition, imagination and production. IEEE Acces. 8:149714–149729. doi: 10.1109/ACCESS.2020.3016756.
  • Shigemoto N, Stoh H, Shibata K, Inoue Y. 2019. Study of deep learning for sound scale decoding technology from human brain auditory cortex. Proceedings of the 2019 IEEE 1st Global Conference on Life Sciences and Technologies, LifeTech 2019; Osaka, Japan. Institute of Electrical and Electronics Engineers Inc. p. 212–213.
  • Shiramatsu TI, Akutsu K, Znoda T, Kanzaki R, Takahashi H. 2014. Decoding of auditory information from steady-state neural activity in rat auditory cortex. Electronics And Communications In Japan. 97(2):17–27. doi: 10.1002/ecj.11572.
  • Sridhar S, Manian V. 2020. Eeg and deep learning based brain cognitive function classification. Computers. 9(4):1–18. doi: 10.3390/computers9040104.
  • Tankus A, Solomon L, Aharony Y, Faust-Socher A, Strauss I. 2021. Machine learning algorithm for decoding multiple subthalamic spike trains for speech brain–machine interfaces. J Neural Eng. 18(6):066021. doi: 10.1088/1741-2552/ac3315.
  • Thornton M, Mandic D, Reichenbach T. 2022. Robust decoding of the speech envelope from EEG recordings through deep neural networks. J Neural Eng. 19(4): doi: 10.1088/1741-2552/ac7976.
  • Willett SM, Groh JM, Lisberger SG, Lindsey, Glickfeld L. Encoding of Concurrent Sounds in the Monkey Inferior Colliculus.
  • Woolley SMN, Fremouw TE, Hsu A, Theunissen FE. 2005. Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nat Neurosci. 8(10):1371–1379. doi: 10.1038/nn1536.
  • Yang M, Sheth SA, Schevon CA, Mckhann Ii GM, Mesgarani N. 2015. Speech reconstruction from human auditory cortex with deep neural networks. Proc. Interspeech 2015. 1121–1125.
  • Yildiz A, Zan H, Said S. 2021. Classification and analysis of epileptic EEG recordings using convolutional neural network and class activation mapping. Biomed Signal Process Control. 68. doi: 10.1016/j.bspc.2021.102720.
  • Zhai X, Khatami F, Sadeghi M, He F, Read HL, Stevenson IH, Escabí MA. 2020. Distinct neural ensemble response statistics are associated with recognition and discrimination of natural sound textures. 117(49):31482–31493. https://www.pnas.org.10.1073/pnas.2005644117/-/DCSupplemental
  • Zheng Y, Escabí MA. 2008. Distinct roles for onset and sustained activity in the neuronal code for temporal periodicity and acoustic envelope shape. J Neurosci. 28(52):14230–14244. doi: 10.1523/JNEUROSCI.2882-08.2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.