50
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

CS-UNet: Cross-scale U-Net with Semantic-position dependencies for retinal vessel segmentation

ORCID Icon, &
Pages 134-153 | Received 21 Sep 2022, Accepted 23 Nov 2023, Published online: 05 Dec 2023

References

  • Alom MZ, Yakopcic C, Hasan M, Taha TM, Asari VK. 2019. Recurrent residual U-Net for medical image segmentation. JMIHI. 6(1):14006. doi: 10.1117/1.JMI.6.1.014006.
  • Bello I, Zoph B, Le Q, Vaswani A, Shlens J 2019. Attention augmented convolutional networks. Proceedings of the IEEE International Conference on Computer Vision; Oct 27-Nov 02; Seoul, Korea (South): IEEE. p.3285–3294. doi:10.1109/ICCV.2019.00338
  • Brand CS. 2012. Management of retinal vascular diseases: a patient-centric approach. Eye. 26(2):S1–S16. doi: 10.1038/eye.2012.32.
  • Cao L, Li H, Zhang Y, Zhang L, Xu L. 2020. Hierarchical method for cataract grading based on retinal images using improved Haar wavelet. Inform Fusion. 53:196–208. doi: 10.1016/j.inffus.2019.06.022.
  • Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M. 1989. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE T Med Imaging. 8(3):263–269. doi: 10.1109/42.34715.
  • Deng X, Ye J. 2022. A retinal blood vessel segmentation based on improved D-MNet and pulse-coupled neural network. Bio-Med Signal Proces. 73:103467. doi: 10.1016/j.bspc.2021.103467.
  • Dolz J, Gopinath K, Yuan J, Lombaert H, Desrosiers C, Ayed IB. 2018. HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation. IEEE T Med Imaging. 38(5):1116–1126. doi: 10.1109/TMI.2018.2878669.
  • Fan Z, Lu J, Wei C, Huang H, Cai X, Chen X. 2018. A hierarchical image matting model for blood vessel segmentation in fundus images. IEEE T Image Process. 28(5):2367–2377. doi: 10.1109/TIP.2018.2885495.
  • Francia GA, Pedraza C, Aceves M, Tovar-Arriaga S. 2020. Chaining a U-net with a residual U-net for retinal blood vessels segmentation. IEEE Acces. 8:38493–38500. doi: 10.1109/ACCESS.2020.2975745.
  • Gu Z, Cheng J, Fu H, Zhou K, Hao H, Zhao Y, Zhang T, Gao S, Liu J. 2019. CE-Net: context encoder network for 2D medical image segmentation. IEEE T Med Imaging. 38(10):2281–2292. doi: 10.1109/TMI.2019.2903562.
  • Guo C, Szemenyei M, Hu Y, Wang W, Zhou W, Yi Y 2021. Channel attention residual u-net for retinal vessel segmentation. Proceedings of the ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); June 06-11; Toronto, ON, Canada: IEEE. p.1185–1189. doi:10.1109/ICASSP39728.2021.9414282
  • Heneghan C, Flynn J, O’Keefe M, Cahill M. 2002. Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Med Image Anal. 6(4):407–429. doi: 10.1016/S1361-8415(02)00058-0.
  • He K, Zhang X, Ren S, Sun J 2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); June 27-30; Las Vegas, NV, USA. p.770–778. doi:10.1002/chin.200650130
  • Hoover AD, Kouznetsova V, Goldbaum M. 2000. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE T Med Imaging. 19(3):203–210. doi: 10.1109/42.845178.
  • Huang Z, Sun M, Liu Y, Wu J. 2022. Csaunet: a cascade self-attention u-shaped network for precise fundus vessel segmentation. Bio-Med Signal Proces. 75:103613. doi: 10.1016/j.bspc.2022.103613.
  • Jin Q, Meng Z, Pham TD, Chen Q, Wei L, Su R. 2019. Dunet: a deformable network for retinal vessel segmentation. Knowl Based Syst. 178:149–162. doi: 10.1016/j.knosys.2019.04.025.
  • Karaali A, Dahyot R, Sexton DJ 2022. DR-VNet: Retinal Vessel Segmentation via Dense Residual UNet. Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI); June 1–3; Paris, France: Springer. p.198–210. doi:10.1007/978-3-031-09037-017
  • Kingma DP, Ba J 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. doi:10.48550/arXiv.1412.6980
  • Li D, Dharmawan DA, Ng BP, Rahardja S 2019. Residual u-net for retinal vessel segmentation. Proceedings of the IEEE International Conference on Image Processing (ICIP); September 22-25; Taipei, Taiwan: IEEE. P.1425–1429. doi:10.1109/ICIP.2019.8803101
  • Li X, Jiang Y, Li M, Yin S. 2020. Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE T Ind Inf. 17(3):1958–1967. doi: 10.1109/TII.2020.2993842.
  • Liu YP, Rui X, Li Z, Zeng D, Li J, Chen P, Liang R. 2021. Feature pyramid U‐Net for retinal vessel segmentation. Iet Image Process. 15(8):1733–1744. doi: 10.1049/ipr2.12142.
  • Long J, Shelhamer E, Darrell T 2015. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; June 07-12; Boston, MA, USA: IEEE. p.3431–3440. doi:10.1109/CVPR.2015.7298965
  • Lv Y, Ma H, Li J, Liu S. 2020. Attention guided U-Net with atrous convolution for accurate retinal vessels segmentation. IEEE Acces. 8:32826–32839. doi: 10.1109/ACCESS.2020.2974027.
  • Owen CG, Rudnicka AR, Mullen R, Barman SA, Monekosso D, Whincup PH, Ng J, Paterson C. 2009. Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Invest Ophth Vis SCI. 50(5):2004–2010. doi: 10.1167/iovs.08-3018.
  • Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A. 2017. Automatic differentiation in pytorch. Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017); Long Beach, CA, USA.
  • Ronneberger O, Fischer P, Brox T 2015. U-net: convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention; Oct 5-9; Munich, Germany: Springer. p.234–241. doi:10.1007/978-3-319-24574-4
  • Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM. 2016. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE T Med Imaging. 35(5):1285–1298. doi: 10.1109/TMI.2016.2528162.
  • Staal J, Abràmoff MD, Niemeijer M, Viergever MA, van Ginneken B. 2004. Ridge-based vessel segmentation in color images of the retina. IEEE T Med Imaging. 23(4):501–509. doi: 10.1109/TMI.2004.825627.
  • Tang S, Yu F. 2021. Construction and verification of retinal vessel segmentation algorithm for color fundus image under BP neural network model. J Supercomput. 77(4):3870–3884. doi: 10.1007/s11227-020-03422-8.
  • Teng T, Lefley M, Claremont D. 2002. Progress towards automated diabetic ocular screening: a review of image analysis and intelligent systems for diabetic retinopathy. Med Biol Eng Comput. 40(1):2–13. doi: 10.1007/BF02347689.
  • Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Ł K, Polosukhin I 2017. Attention is all you need. Proceedings of the Advances in Neural Information Processing Systems. Dec 4-9; Long Beach, USA: NIPS. p.6000–6010.
  • Wang H, Xu G, Pan XP, Liu ZB, Tang NN, Lan R, Luo X. 2022. Attention-inception-based U-Net for retinal vessel segmentation with advanced residual. Comput Electr Eng. 98:107670. doi: 10.1016/j.compeleceng.2021.107670.
  • Wang C, Zhao Z, Yu Y. 2021. Fine retinal vessel segmentation by combining nest U-net and patch-learning. Soft Comput. 25(7):5519–5532. doi: 10.1007/s00500-020-05552-w.
  • Wang Z, Zou N, Shen D, Ji S 2020. Non-local u-nets for biomedical image segmentation. Proceedings of the AAAI Conference on Artificial Intelligence; Feb 7–12; New York Hilton Midtown: AAAI. 34( 04):6315–6322. doi:10.1609/aaai.v34i04.6100
  • Wu Y, Xia Y, Song Y, Zhang D, Liu D, Zhang C, Cai W 2019. Vessel-Net: Retinal vessel segmentation under multi-path supervision. Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention; Oct 13–17; Shenzhen, China: Springer. p.264–272. doi:10.1007/978-3-030-32239-7_30
  • Xi Y, Zhong L, Xie W, Qin G, Liu Y, Feng Q, Yang W. 2021. View identification Assisted fully convolutional network for lung field segmentation of frontal and lateral chest radiographs. IEEE Acces. 9:59835–59847. doi: 10.1109/ACCESS.2021.3074026.
  • Yan Z, Yang X, Cheng KT. 2018a. Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE T Bio-Med Eng. 65(9):1912–1923. doi: 10.1109/TBME.2018.2828137.
  • Yan Z, Yang X, Cheng KT. 2018b. A three-stage deep learning model for accurate retinal vessel segmentation. IEEE J Bio-Med Health. 23(4):1427–1436. doi: 10.1109/JBHI.2018.2872813.
  • Yeung M, Sala E, Schönlieb CB, Rundo L. 2021. Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy. Comput Biol Med. 137:104815. doi: 10.1016/j.compbiomed.2021.104815.
  • Yin Y, Adel M, Bourennane S. 2013. Automatic segmentation and measurement of vasculature in retinal fundus images using probabilistic formulation. Comput Math Method M. 2013:1–16. doi: 10.1155/2013/260410.
  • Yin P, Yuan R, Cheng Y, Wu Q. 2020. Deep guidance network for biomedical image segmentation. IEEE Acces. 8:116106–116116. doi: 10.1109/ACCESS.2020.3002835.
  • Zhang J, Dashtbozorg B, Bekkers E, Pluim JPW, Duits R, Ter Haar Romeny BM. 2016. Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE T Med Imaging. 35(12):2631–2644. doi: 10.1109/TMI.2016.2587062.
  • Zhang Y, He M, Chen Z, Hu K, Li X, Gao X. 2022. Bridge-Net: context-involved U-net with patch-based loss weight mapping for retinal blood vessel segmentation. Expert Syst Appl. 195:116526. doi: 10.1016/j.eswa.2022.116526.
  • Zhao X, Zhang L, Lu H 2021. Automatic polyp segmentation via multi-scale subtraction network. Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention; Sep 27–Oct 1; Strasbourg, France: Springer. p.120–130. doi:10.1007/978-3-030-87193-2_12
  • Zhuang J. 2018. LadderNet: multi-path networks based on U-Net for medical image segmentation. arXiv:1810.07810. http://arxiv.org/abs/1810.07810.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.