12
Views
2
CrossRef citations to date
0
Altmetric
Article

Effect of expression of the Escherichia coli nth gene in Saccharomyces cerevisiae on the toxicity of ionizing radiation and hydrogen peroxide

, , , , , , & show all
Pages 747-755 | Received 02 Sep 2002, Accepted 03 Jul 2003, Published online: 03 Jul 2009

References

  • ALSETH, I., EIDE, L., PIROVANO, M., ROGNES, T., SEEBERG, E. and BJORAS, M., 1999, The Saccharomyces cerevisiae homologues of endonuclease III from Eschefichia coli, Ntg 1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Molecular and Cellular Biology, 19, 3779–3787.
  • ASAHARA, H., WISTORT, P. M., BANK, J. F., BAKEIUAN, R. H. and CUNNINGHAM, R. P., 1989, Purification and characteri-zation of Escherichia coli endonuclease III from the cloned nth gene. Biochemistry, 28, 4444–4449.
  • AUGERI, L., LEE, Y. M., BARTON, A. B. and DOETSCH, P. W., 1997, Purification, characterization, gene cloning, and expression of Saccharomyces cerevisiae redoxyendonuclease, a homolog of Eschefichia coli endonuclease III. Biochemistry, 36, 721–729.
  • BArux, V. and VERLY, W. G., 1987, Eschefichia coli endonuclease III is not an endonuclease but a beta-elimination catalyst. Biochemical Journal, 242, 565–572.
  • BENSON, F. E., BAUMANN, P. and WEST, S. C., 1998, Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature, 391, 401–404.
  • BIRNBOIM, H. C. and DOLY, J., 1979, A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research, 7, 1513–1523.
  • BLAKELY, W. F., FUCIARELLI, A. F., WEGHER, B. J. and DIZDAROGLU, M., 1990, Hydrogen peroxide-induced base damage in deoxyribonucleic acid. Radiation Research, 121, 338–343.
  • BOITEUX, S., 1993, Properties and biological functions of the NTH and FPG proteins of Eschefichia coli: two DNA glycosylases that repair oxidative damage in DNA. Journal of Photochemistry and Photobiology, B: Biology, 19, 87–96.
  • BREIMER, L. H. and LINDAHL, T., 1984, DNA glycosylase activities for thymine residues damaged by ring saturation, frag-mentation, or ring contraction are functions of endo-nuclease III in Eschefichia coli. Journal of Biological Chemistry, 259, 5543–5548.
  • BROZMANOVA, J., KLEIBL, K., VitKovA, V., gKORVAGA, M., CERNAKOVA, L. and MARGISON, G. P., 1990, Expression of the E. coli ada gene in yeast protects against the toxic and mutagenic effects off-methyl-N-nitro-N-nitrosoguanicline. Nucleic Acids Research, 18, 331–335.
  • BROZMANOVA, J., VL6KOVA, V., CHOVANEC, M., 6ERNÁKOVA, L., gKORVAGA, M. and MARGISON, G. P., 1994, Expression of the E. coli ada gene in S. cerevisiae provides cellular resistance to N-methyl-N-nitro-N-nitrosoguanicline in rad6 but not in rad52 mutants. Nucleic Acids Research, 22, 5717–5722.
  • BROZMANOVA, J., VitKovA, V., FARKAgOVA, E., DunM, A., VLASÁKOVA, D., CHOVANEC, M., MIKULOVSKÁ, Z., FRIDRICHOVA, I., SAFFI, J. and HENRIQUES, J. A. P., 2001, Increased DNA double strand breakage is responsible for sensitivity of the pso3-1 mutant of Saccharomyces cerevisiae to hydrogen peroxide. Mutation Research, 485, 345–355.
  • CUNNINGHAM, R. P. and WEISS, B., 1985, Endonuclease III (nth) mutants of Eschefichia coli. Proceedings of the National Academy of Sciences, USA, 82, 474–478.
  • CUNNINGHAM, R. P., ASAHARA, H., BANK, J. F., SCHOLES, C. P., SALERNO, J. C., SURERUS, K., MUNCK, E., MCCRACKEN, J., PEISACH, J. and EMPTAGE, M. H., 1989, Endonuclease III is an iron-sulfur protein. Biochemistry, 28, 4450–4455.
  • CUNNINGHAM, R. P., AHERN, H., XING, D. X., THAYER, M. M. and TAINER, J. A., 1994, Structure and function of Eschefichia coli endonuclease III. Annals of the New York Academy of Sciences, 726, 215–222.
  • DEMPLE, B. and LINN, S., 1980, DNA N-glycosylases and UV repair. Nature, 287, 203–208.
  • DEMPLE, B. and HARRISON, L., 1994, Repair of oxidative damage to DNA: enzymology and biology. Annual Review of Biochemistry, 63, 915–948.
  • DOETSCH, P. W., HELLAND, D. E. and HASELTINE, W. A., 1986, Mechanism of action of a mammalian DNA repair endonuclease. Biochemistry, 25, 2212–2220.
  • DOETSCH, P. W., MOREY, N. J., SWANSON, R. L. and JINKS-ROBERTSON, S., 2001, Yeast base excision repair: interconnections and networks. Progress in Nucleic Acid Research and Molecular Biology, 68, 29–39.
  • DuDAS', A., MARKovA, E., VLAsÁxovA, D., KOLMAN, A., BARTOgONA, Z., BROZMANOVA, J. and CHOVANEC, M., 2003, The Escherichia coli RecA protein complements recombination defective phenotype of the Saccharomyces cerevisiae rad52 mutant cells. Yeast, 20, 389–396.
  • EIDE, L., BJORAS, M., PIROVANO, M., ALSETH, I., BERDAL, K. G. and SEEBERG, E., 1996, Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endo-nuclease III from Eschefichia coli. Proceedings of the National Academy of Sciences, USA, 93, 10 735–10 740.
  • FABRE, F., 1973, The role of repair mechanisms in the variations of ultraviolet and gamma-radiation sensitivity during the cell cycle of Schizosaccharomyces pombe. Radiation Research, 56, 528–539.
  • FARKA'S.OVA, E., CHOVANEC, M., VLASÁKOVA, D., VitKovA, V., MARGISON, G. P. and BROZMANOVA, J., 2000, Effect of stable integration of the Eschefichia coli ada gene on the sensitivity of Saccharomyces cerevisiae to the toxic and mutagenic effects of alkylating agents. Environmental and Molecular Mutagenesis, 35, 66–99.
  • FUCIARELLI, A. F., WEGHER, B. J., GAJEWSKI, E., DIZDAROGLU, M. and BLAKELY, W. F., 1989, Quantitative measurement of radiation-induced base products in DNA using gas chromatography-mass spectrometry. Radiation Research, 119, 219–231.
  • FUCIARELLI, A. F., WEGHER, B. J., BLAKELY, W. F. and DIZDAROGLU, M., 1990, Yields of radiation-induced base products in DNA: effects of DNA conformation and gassing conditions. International Journal of Radiation Biology, 58, 397–415.
  • GATES III, F. T. and LINN, S., 1977, Endonuclease V of Eschefichia coli. Journal of Biological Chemistry, 252, 1647–1653.
  • GELLON, L., BARBEY, R., AUFFRET VAN DER KEMP, P., THOMAS, D. and BorrEux, S., 2001, Synergism between base excision repair, mediated by the DNA glycosylases Ntgl and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 265, 1087–1096.
  • GOSSETT', J., LEE, K., CUNNINGHAM, R. P. and DOETSCH, P. W., 1988, Yeast redoxyendonuclease, a DNA repair enzyme similar to Eschefichia coli endonuclease III. Biochemistry, 27, 2629–2634.
  • HARRISON, L., gKORVAGA, M., CUNNINGHAM, R. P., HENDRY, J. H. and MARGISON, G. P., 1992, Transfection of the Escherichia coli nth gene into radiosensitive Chinese hamster cells: effects on sensitivity to radiation, hydrogen peroxide, and bleomycin sulfate. Radiation Research, 132, 30–39.
  • Ho, K. S. Y., 1975, Induction of DNA double-strand breaks by X-rays in a radiosensitive strain of the yeast Saccharomyces cerevisiae. Mutation Research, 30, 327–334.
  • IA/LAY, J. A., CHIN, S. M. and LINN, S., 1988, Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 240, 640–642.
  • ITO, H., FUKUDA, Y., MURATA, K. and KIMUR AA., 1983, Transformation of intact yeast cells treated with alkali cations. Journal of Bacteriology, 153, 163–168.
  • ITO, T., BAKER, S. C., STICKLEY, C. D., PEAK, J. G. and PEAK, M. J., 1993, Dependence of the yield of strand breaks induced by gamma-rays in DNA on the physical conditions of exposure: water content and temperature. International Journal of Radiation Biology, 63, 289–296.
  • JEGGO, P. A., 1990, Studies on mammalian mutants defective in rejoining double-strand breaks in DNA. Mutation Research, 239, 1–16.
  • JORGENSEN, T. J., Kow, Y. W., WALLACE, S. S. and HENNER, W. D., 1987, Mechanism of action of Micrococcus luteus gamma-endonuclease. Biochemistry, 26, 6436–6443.
  • KATCHER, H. L. and WALLACE, S. S., 1983, Characterization of the Escherichia coli X-ray endonuclease, endonuclease III. Biochemistry, 22, 4071–4081.
  • Kow, Y. W. and WALLACE, S. S., 1987, Mechanism of action of Escherichia coli endonuclease III. Biochemistry, 26, 8200–8206.
  • KUNKEL, T. A., ROBERTS, J. D. and ZAKOUR, R. A., 1987, Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods in Enzymology, 154, 367–382.
  • MANDEL, M. and HIG AA., 1970, Calcium-dependent bacterio-phage DNA infection. Journal of Molecular Biology, 53, 159–162.
  • MANIATIS, T., FRuscx, E. F. and SAMBROOK, J., 1982, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor: Cold Spring Harbor Laboratory Press).
  • MARGISON, G. P. and O'CONNOR, P. J., 1990, Biological consequences of reaction with DNA: role of specific lesion. In S. C. Cooper and P. L. Grover (eds), Handbook of Experimental Pharmacology (Berlin: Springer), pp. 547–571.
  • MILLIGAN, J. R., AGUILERA, J. A., NGUYEN, T. T., WARD, J. F., Kow, Y. W., HE, B. and CUNNINGHAM, R. P., 1999, Yield of DNA strand breaks after base oxidation of plasmid DNA. Radiation Research, 151, 334–342.
  • MORTENSEN, U. H., BENDIXEN, C., SUNJEVARIC, I. and ROTHSTEIN, R., 1996, DNA strand annealing is promoted by the yeast Rad52 protein. Proceedings of the National Academy of Sciences, USA, 93, 10 729–10 734.
  • NASH, H. M., BRUNER, S. D., SCHARER, 0. D., KAWATE, T., ADDONA, T. A., SPONNER, E., LANE, W. S. and VERDINE, G. L., 1996, Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Current Biology, 6, 968–980.
  • NEw, J. H., SUGIYAMA, T., ZArrsEvA, E. and KOWALCZYKOWSKI, S. C., 1998, Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature, 391, 407–410.
  • NEWLON, C. S., 1988, Yeast chromosome replication and segre-gation. Microbiological Reviews, 52, 568–601.
  • NUNES, D. L. and BEAM, C. A., 1973, Repair mechanisms and cell cycle dependent variations in X-ray sensitivity of diploid yeast. Radiation Research, 53, 226–234.
  • PASTINK, A. and LOHMAN, P. H. M., 1999, Repair and consequences of double-strand breaks in DNA. Mutation Research, 428, 141–156.
  • PASTINK, A., EEKEN, J. C. and LOHMAN, P. H. M., 2001, Genomic integrity and the repair of double-strand DNA breaks. Mutation Research, 480–481, 37–50.
  • PAGuEs, F. and HABER, J. E., 1999, Multiple pathways of recombination induced by double-strand breaks in Saccharonzyces cerevisiae. Microbiology and Molecular Biology Reviews, 63, 349–404.
  • PIERSEN, C. E., PRINCE, M. A., AUGUSTINE, M. L., DODSON, M. L. and LLOYD, R. S., 1995, Purification and cloning ofMicrococcus luteus ultraviolet endonuclease, an N-glycosylase/abasic lyase that proceeds via an imino enzyme—DNA intermediate. Journal of Biological Chemistry, 270, 23 475-23 484. PRAKASH, L. and PRAKASH, S., 1977, Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics, 86, 33–55.
  • RADMAN, M., 1976, An endonuclease from Escherichia coli that introduces single polynucleotide chain scissions in ultraviolet-irradiated DNA. Journal of Biological Chemistry, 251, 1438–1445.
  • RESNICK, M. A. and MARTIN, P., 1976, The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Molecular and General Genetics, 143, 119–129.
  • SAMBROOK, J. and RussEu, D. W., 2001, Molecular Cloning: A Laboratog Manual (Cold Spring Harbor: Cold Spring Harbor Laboratory Press), Vol. 1, pp. 3.23-3.25.
  • SHINOHARA, A. and OGAWA, T., 1998, Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature, 391, 404407.
  • SUNG, P., 1997, Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recom-binase. Journal of Biological Chemistry, 272, 28 194–28 197.
  • SUNG, P., TRUJILLO, K. M. and VAN KOMEN, S., 2000, Recom-bination factors of Saccharomyces cerevisiae. Mutation Research, 451, 257–275.
  • SvmiNaroN, L. S., 2002, Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiology and Molecular Biology Reviews, 66, 630–670.
  • SWANSON, R. L., MOREY, N. J., DOETSCH, P. W. and JINKSROBERTSON, S., 1999, Overlapping specificities of base excision repair, nucleotide excision repair, recom-bination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Molecular and Cellular Biology, 19, 2929–2935.
  • TEOULE, R., 1987, Radiation-induced DNA damage and its repair: a review. Interantional Journal of Radiation Biology, 51, 573–589.
  • THAYER, M. M., AHERN, H., XING, D. X., CUNNINGHAM, R. P. and TAINER, J. A., 1995, Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO Journal, 14, 4108–4120.
  • VAN DEN BOSCH, M., LOHMAN, P. H. M. and PASTINK, A., 2002, DNA double-strand break repair by homologous recom-bination. Biological Chemistry, 383, 873–892.
  • WARD," F., 1994, The complexity of DNA damage: relevance to biological consequences. International Journal of Radiation Biology, 66, 427–432.
  • WARD, J. F., EVANS, J. W., LIMOLI, C. L. and CALABROJONES, P. M., 1987, Radiation and hydrogen peroxide induced free radical damage to DNA. British Journal of Cancer, 55, 105–112.
  • You, H. J., SWANSON, R. L. and DOETSCH, P. W., 1998, Saccharomyces cerevisiae possesses two functional homologues of Escherichia coli endonuclease III. Biochemistry, 37, 6033–6040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.