102
Views
37
CrossRef citations to date
0
Altmetric
Article

Ionizing radiation modules of the expression and tyrosine phosphorylation of the focal adhesion‐associated proteins focal adhesion kinase (FAK) and its substrates p130cas and paxillin in A549 human lung carcinoma cells in vitro

, &
Pages 721-731 | Received 21 Dec 2002, Accepted 30 Jul 2003, Published online: 03 Jul 2009

References

  • ALMEIDA, E. A. C., Luc, D., HAN, Q, HAUCK, C. R., Jilv, F., KAWAKATSU, H., SCHLAEPFER, D. D. and DAMSKY, C. H., 2000, Matrix survival signaling: from fibronectin via focal adhesion kinase to c-Jun NH2-terminal kinase. Journal of Cell Biology, 149, 741–754.
  • BELT IS, S. L., MILLER, J. T. and TURNER, C. E., 1995, Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase. Journal of Biological Chemistry, 270, 17 437–17 441.
  • BELT IS, S. L., PEROTTA, J. A., CURTIS, M. S. and TURNER, C. E., 1997, Adhesion of fibroblasts to fibronectin stimulates both serine and tyrosine phosphorylation of paxillin. Biochemical Journal, 325, 375–381.
  • BUIUUDGE, K. and CHRZANOWSKA-WODNICKA, M., 1996, Focal adhesions, contractility, and signaling. Annual Review of Cell and Development Biology, 12, 463–518.
  • BUIUUDGE, K., TURNER, C. E. and ROMER, L. H., 1992, Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. Journal of Cell Biology, 119, 893–903.
  • CALALB, M. B., POLTE, T. R. and HANKS, S. K., 1995, Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Molecular and Cellular Biology, 15, 954–963.
  • CANCE, W. G., HARRIS," E., IAcoccA, M. V., ROCHE, E., YANG, X., CHANG, J., Simicmrs, S. and XU, L., 2000, Immun-histochemical analysis of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clinical Cancer Research, 6, 2417–2423.
  • GARY, L. A., HAN, D. C., POLTE, T. R., HANKS, S. K. and GUAN, J. L., 1998, Identification of p130cas as a mediator of focal adhesion kinase-promoted cell migration. Journal of Cell Biology, 140, 211–221.
  • CHEN, H. C., APPEDDU, P. A., PARSONS, J. T., HILDEBRAND, J. D., ScHALLER, M. D. and GUAN, J. L., 1995, Interaction of focal adhesion kinase with cytoskeletal protein talin. Journal of Biological Chemistry, 270, 16 995–16 999.
  • CORDES, N. and MEINEKE, V., 2003, Cell adhesion-mediated radioresistance (CAM-RR): extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro. Strahlentherapie und Onkologie, 179, 337–344.
  • CORDES, N. and VAN BEUNINGEN, D., in press, Cell adhesion to the extracellular matrix protein fibronectin modulates radiation-dependent G2 phase arrest involving integrin-linked kinase (ILK) and glycogen synthase kinase-3/3 (GSK-3/3) in vitro. British Journal of Cancer, 18, 1470-1479.
  • CORDES, N., BLAESE, M. A., MEINEKE, V. and VAN BEUNINGEN, D., 2002, Ionizing radiation induces up-regulation of func-tional Vintegrin in human lung tumour cell lines in vitro. International Journal of Radiation Biology, 78, 347–357.
  • CORDES, N., BLAESE, M. A., PLAsswnm, L., RODEMANN, H. P. and VAN BEUNINGEN, D., 2003, Fibronectin and laminin increase resistance to ionising radiation and the cytotoxic drug Ukraing in human tumour and normal cells in vitro. International Journal of Radiation Biology, 79, 709–720.
  • DENEKAMP, J., 1986, Cell kinetics and radiation biology. International Journal of Radiation Biology, 49, 357–380.
  • DURAND, R. E. and SUTHERLAND, W. H., 1972, Effects of intercellular contact on repair of radiation damage. Experimental Cell Research, 71, 75–70.
  • FELLER, S. M., POSERN, G., Voss, J.5 KARDINAL, C., SAKKAB, D., ZHENG, J. and KNUDSEN, B. 5.5 1998, Physiological signals and oncogenesis mediated through Crk family adaptor proteins. Journal of Cellular Physiology, 177, 535–552.
  • Fluscu, S. M., Voum, K., ROUSLAHTI, E. and CHAN-HUI, P. Y., 1996, Control of adhesion-dependent cell survival by focal adhesion kinase. Journal of Cell Biology, 134, 793–799.
  • FUKS, Z., VLODAVSKY, I.5 ANDREEFF, M., MCLOUGHLIN, M. and HAlmownz-FRIEDmANN, A., 1992, Effects of extracellular matrix on the response of endothelial cells to radiation in vitro. European Journal of Cancer, 28a, 725–731.
  • GUAN, J. L., 1997, Role of focal adhesion kinase in integrin signaling. International Journal of Biochemistry and Cell Biology, 29, 1085–1096.
  • HAN, D. C. and GUAN, J., 1999, Association of focal adhesion kinase with Grb7 and its role in cell migration. Journal of Biological Chemistry, 274, 24 425–24 430.
  • HARMS-RINGDAHL, M., NICOTERA, P. and RADFORD, I. R., 1996, Radiation-induced apoptosis. Mutation Research, 366, 172–179.
  • HAUCK, C. R., SIEG, D. J., HKA, D. A., LoFrus, J. C., GAARDE, W. A.5 MONIA, B. P. and SCHLAEPFER, D. D., 2001, Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells. Cancer Research, 61, 7079–7090.
  • HAZLEHURST, L. A., DAMIAN°, J. S., BUYUKSAI, I., PLEDGER, W. J. and DALTON, W. S., 2000, Adhesion to fibronectin via )31-integrins regulates p27kip 1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene, 19, 4319–4327.
  • HECKER, T. P. and GLADSON, C. L., 2003, Focal adhesion kinase in cancer. Front Bioscience, 8, 705–714.
  • HENDRY, J. H. and WEST, C. M. L., 1997, Apoptosis and mitotic cell death: their relative contributions to normal-tissue and tumor radiation response. International Journal of Radiation Biology, 71, 709–719.
  • HILDEBRAND, J. D., TAYLOR, J. M. and PARSONS, J. T., 1996, An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Molecular and Cellular Biology, 16, 3169–3178.
  • HYNES, R. O., 2002, Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–687.
  • KANTAR, S. S., Thou°, C. A. and ONADA, J. M., 1993, Low-dose radiation-induced endothelial cell retraction. International Journal of Radiation Biology, 64, 319–328.
  • KASAHARA, T., Kooucm, E., FUNAKOSIE, M., Atzu-YoRoTA, E. and SONODA, Y., 2002, Antiapoptotic action of focal adhesion kinase (FAK) against ionizing radiation. Antioxidants and Redox Signaling, 4, 491–499.
  • KLEMKE, R. L., LENG, J., MOLANDER, R., BROOKS, P. C., VUORI, K. and CHERESH, J., 1998, CAS/Crk coupling serves as a 'molecular switch' for induction of cell migration. Journal of Cell Biology, 140, 961–972.
  • KOTELES, G. J., SomosY, Z. and KUBASOVA, T., 1987, Radiation-induced changes on cell surface charges. Radiation Physics and Chemistry, 30, 389–399.
  • OwEsT, J. D., RuEsT, P. J., FRY, D. W. and HANKS, S. K., 1999, Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Molecular and Cellular Biology, 19, 4806–4818.
  • POLTE, T. R. and HANKS, S. K., 1995, Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas. Proceedings of the National Academy of Sciences, USA, 92, 10 678–10 682.
  • REISKE, H. R., Kko, S. C., CARY," L., GuAsT, J. F., LM," F. and CHEN, H. C., 1999, Requirement of phosphatidylinositol 3-kinase in focal adhesion kinase-promoted cell migration. Journal of Biological Chemistry, 274, 12361–12366. RICHARDSON, A., MALIK, R. K., HILDEBRAND, J. D. and PARSONS, J. T., 1997, Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation. Molecular and Cellular Biology, 17, 6906–6914.
  • Ross, R. W., O'HARA, M. O., WILLIAMSON, S. K. and GRANT, D. S., 1999, The role of laminin-1 in the modulation of radiation damage in endothelial cells and differentiation. Radiation Research, 152, 14–28.
  • RYDBERG, B., 2001, Radiation-induced DNA damage and chromatin structure. Acta Oncologica, 40, 682–685.
  • SCHALLER, M. D., 2001, Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochimica and Biophysica Acta, 1540, 1–21.
  • SCHALLER, M. D. and PARSONS," T., 1994, Focal adhesion kinase and associated proteins. Current Opinion in Cell Biology, 6, 705–710.
  • SCHALLER, M. D. and PARSONS, J. T., 1995, pp125 FAK-dependent tyrosine-phosphorylation of paxillin creates a high-affinity binding sit for Crk. Molecular and Cellular Biology, 15, 2635–2645.
  • SCHALLER, M. D., HILDEBRAND, J. D., SHANNON, J. D., Fox, J. W., VINES, R. R. and PARSONS, J. T., 1994, Autophaphorylation of the focal adhesion kinase, pp125F, directs SH2-dependent binding of pp60'. Molecular and Cellular Biology, 14, 1680–1688.
  • SCHLAEPFER, D. D., BRoomE, M. A. and HUNTER, T., 1997, Fibronectin-stimulated signaling from a focal adhesion kinase-c-Src complex: involvement of the Grb2, p130cas, and Nck adaptor proteins. Molecular and Cellular Biology, 17, 1702–1713.
  • SCHLAEPFER, D. D., HAUCK, C. R. and SIEG, D. J., 1999, Signaling through focal adhesion kinase. Progress in Biophysics and Molecular Biology, 71, 435–478.
  • SETHI, T., RINTOUL, R. C., MOORE, R. C., MACKINNON, A. C., SALTER, D., CHoo, C., CHILVERS, E. R., DRANSFIELD, I., DONNELLY, S. C., STRIETER, R. and HASLETT, C., 1999, Extracellular matrix proteins protect small cell lung cancer cell against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nature Medicine, 5, 662–668.
  • SIEG, D. J., HAUCK, C. R. and SCHLAEPFER, D. D., 1999, Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. Journal of Cell Science, 112, 2677–2691.
  • SIEG, D. J.5 HAUCK, C. R., ILIC, D., KLINGBEM, C. K., SCHAEFER, E., DAMSKY, C. H. and SCHLAEPFER, D. D., 2000, FAK integrates growth factor and integrin signals to promote cell migration. Progress in Biophysics and Molecular Biology, 2, 249–256.
  • SomosY, Z., KUBASOVA, T., ESCEDI, G. and KOTELES, G. J., 1986, Radiation-induced changes of negative charges on the cell surface of primary human fibroblasts. International Journal of Radiation Biology, 49, 969-978. &MOW, Z., SASS, M., BOGNAR, G., KOVACS, J. and KoTErEs, G. J., 1995, X-irradiation-induced disorganisation of cytoskeletal filaments and cell contacts in HT29 cells. Scanning Microscopy, 9, 763–772.
  • STEVENSON, M. A., POLLOCK, S. S., COLEMAN, C. L. and CALDERWOOD, S. K., 1994, X-irradiation, phorbol esters, and H202 stimulate mitogen-activated protein kinase activity in NIH-3T3 cells through the formation of reactive oxygen intermediates. Cancer Research, 54, 12–15.
  • TACHEBANA, K., SATO, T., D'AyIRRo, N. and MommoTo, C., 1995, Direct association of pp125FAK with paxillin, the focal adhesion targeting mechanism of pp125FAK. Journal of Experimental Medicine, 182, 1089–1099.
  • THOMAS, S. M., SoRmsro, P. and ImAmoTo, A., 1995, Specific and redundant roles of Src and Fyn in organizing the cytoskeleton. Nature, 376, 267–271.
  • TROSKO, J. E., CHANG, C. C. and MADHUKAR, B. V., 1990, Modulation of intercellular communication during radiation and chemical carcinogenesis. Radiation Research, 123, 241–251.
  • TURNER, C. E., 1998, Paxillin. International Journal of Biochemistry and Cell Biology, 30, 955–959.
  • Vuom, K., HIRAI, H., AtzAwA, S. and RousLAHri, E., 1996, Introduction of p130cas signaling complex formation upon integrin-mediated cell adhesion: a role for Src family kinases. Molecular and Cellular Biology, 16, 2606–2613.
  • WALTERS, R. A. and PETERSEN, D. F., 1968, Radiosensitivity of mammalian cells. I. Timing and dose-dependence of radiation-induced division delay. Biophysical Journal, 8, 1475–1487.
  • WEI, L., YANG, A., ZHANG, X. and Yu, Q, 2002, Anchorage-independent phosphorylation of p 1 30(Cas) protects lung adenocarcinoma cells from anoikis. Journal of Cellular Biochemistry, 87, 439–449.
  • ZHANG, X., CHATT'OPADHYAY, A.JI, Q. S., OwEN, J. D., RUEST, P. J., CARPENETER, G. and HANKS, S. K., 1999, Focal adhesion kinase promotes phospholipase C-gamma 1 activity. Proceedings of the National Academy of Sciences, USA, 96, 9021–9026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.