23
Views
8
CrossRef citations to date
0
Altmetric
DNA damage and repair

Ntg1 and Ntg2 proteins as 5‐formyluracil‐DNA glycosylases/AP lyases in Saccharomyces cerevisiae

, , , &
Pages 341-349 | Received 19 Aug 2002, Accepted 31 Jan 2003, Published online: 03 Jul 2009

References

  • ALSETH, I., EIDE, L., PIROVANO, M., ROGNES, T., SEEBERG, E. and BjoaAs, M., 1999, The Saccharonzyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg 1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Molecular and Cellular Biology, 19, 3779–3783.
  • AMES, B. N., SIIIGENAGA, M. K. and HAGEN, T. M., 1993, Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences, USA, 90, 7915–7922.
  • ANENSEN, H., PROVAN, F., LIAN, A. T., REINERTSEN, S.-H. H. S., UENO, Y., MATSUDA, A., SEEBERG, E. and BJELLAND, S., 2001, Mutations induced by 5-formy1-2'-deoxyuridine in Escherichia coli include base substitutions that can arise from mispairs of 5-formyluracil with guanine, cytosine and thymine. Mutation Research, 476, 99–107.
  • AUGERI, L., TjF, Y. M., BARTON, A. B. and DOETSCH, P. W., 1997, Puri-fication, characterization, gene cloning, and expression of Saccharomyces cerevisiae redoxyendonuclease, a homolog of Escherichia coli endonuclease III. Biochemistry, 36, 721–729.
  • BECKMAN, K. B. and AMES, B. N., 1998, The free radical theory of aging !natures. Physiological Reviews, 78, 547–581.
  • BJELLAND, S., ANENSEN, H., KNIEVELSRUD, I. and SEEBERG, E., 2001, Cellular effects of 5-formyluracil in DNA. Mutation Research, 486, 147–154.
  • BJELLAND, S., BnumAND, N. K., BENNECHE, T., VOLDEN, G. and SEEBERG, E., 1994, DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the AlkA enzyme in Escherichia coli. Journal of Biological Chemistry, 269, 30489–30495.
  • BRUNER, S. D., NASH, H. M., LANE, W. S. and VERDINE, G. L., 1998, Repair of oxidatively damaged guanine in Sacchar-omyces cerevisiae by an alternative pathway. Current Biology, 8, 393–403.
  • CADET, J., DELATOUR, T., DOUKI, T., GASPARUTIO, D., POUGET, J. P., RAVANAT, J. L. and SAUVAIGO, S., 1999, Hydroxyl radicals and DNA base damage. Mutation Research, 424, 9–21.
  • DAVID, S. S. and Wnnams, S. D., 1998, Chemistry of glycosy-lases and endonucleases involved in base-excision repair. Chemical Reviews, 98, 1221–1262.
  • DEMPLE, B. and HARRISON, L., 1994, Repair of oxidative damage to DNA: enzymology and biology. Annual Review of Biochemistry, 63, 915–948.
  • DIANOV, G. L., THYBO, T., DIANOVA, I. I., LIPINSKI, L. J. and BOHR, V. A., 2000, Single nucleotide patch base excision repair is the major pathway for removal of thymine glycol from DNA in human cell extracts. Journal of Biological Chemistry, 275, 11809–11813.
  • DOUKI, T., DELATOUR, T., PAGANON, F. and CADET, J., 1996, Measurement of oxidative damage at pyrimicline bases in gamma-irradiated DNA. Chemical Research in Toxicology, 9, 1145–1151.
  • EIDE, L., BjoaAs, M., PIROVANO, M., ALSETH, I., BERDAL, K. G. and SEEBERG, E., 1996, Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease III from Eschefichia coli. Proceedings of the National Academy of Sciences, USA, 93, 10735–10740.
  • EISEN, J. A. and HANAWALT, P. C., 1999, A phylogenomic study of DNA repair genes, proteins, and processes. Mutation Research, 435, 171–213.
  • FUJIKAWA, K., Kamwa, H. and KASAI, H., 1998, The mutations induced by oxidatively damaged nucleotides, 5-formyl-dUTP and 5-hydroxy-dCTP, in Escherichia coli. Nucleic Acids Research, 26, 4582–4587.
  • GELLON, L., BARBEY, R., AUFFRET VAN DER KEMP, P., THOMAS, D. and BorrEux, S., 2001, Synergism between base excision repair, mediated by the DNA glycosylases Ntgl and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 265, 1087–1096.
  • GIRARD, P. M., GUIBOURT, N. and BorrEux, S., 1997, The Oggl protein of Saccharomyces cerevisiae: a 7,8-clihydro-8-oxoguanine DNA glycosylase/AP lyase whose lysine 241 is a critical residue for catalytic activity. Nucleic Acids Research, 25, 3204–3211.
  • HAZRA, T. K., Izumi, T., BOLDOGH, I., IminoFF, B., Kow, Y. W., JARUGA, P., DIZDALOGLU, M. and MITRA, S., 2002, Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proceedings of the National Academy of Sciences, USA, 99, 3523–3528.
  • HAZRA, T. K., Izumi, T., MAIDT, L., FLOYD, R. A. and MITRA, S., 1998, The presence of two distinct 8-oxoguanine repair enzymes in human cells: their potential complementary roles in preventing mutation. Nucleic Acids Research, 26, 5116–5122.
  • HILBERT, T. P., CHAUNG, W., BOORSTEIN, R. J., CUNNINGHAM, R. P. and TEEBOR, G. W., 1997, Cloning and expression of the cDNA encoding the human homologue of the DNA repair enzyme, Escherichia coli endonuclease III. Journal of Biological Chemistry, 272, 6733–6740.
  • IKEDA, S., BISWAS, T., ROY, R., Izumi, T., BOLDOGH, I., KUROSKY, A., SARKER, A. H., SEKI, S. and MrnzA, S., 1998, Puri-fication and characterization of human NTH1, a homolog of Escherichia coli endonuclease III. Direct identification of Lys-212 as the active nucleophilic residue. Journal of Biological Chemistry, 273, 21585–21593.
  • KAMIYA, H., MURATA-KAMIYA, N., KARIN°, N., UENO, Y., MATSUDA, A. and KASAI, H., 2002, Induction of T -> G and T -> A transversions by 5-formyluracil in mammalian cells. Mutation Research, 513, 213–232.
  • KAspa, H., IrDA, A., YAMAIZUMI, Z., NISHIMURA, S. and TANOOKA, H, 1990,5-Formyldeoxyuricline: a new type of DNA damage induced by ionizing radiation and its mutagenicity to Salmonella strain TA102. Mutation Research, 243, 249–253.
  • KLUNGLAND, A., PAULSEN, R., ROLSETH, V., YAMADA, Y., UENO, Y., WILK, P., MATSUDA, A., SEEBERG, E. and BJELLAND, S., 2001, 5-Formyluracil and its nucleoside derivatives confer toxi-city and mutagenicity to mammalian cells by interfering with normal RNA and DNA metabolism. Toxicology Letters, 119, 71–78.
  • LEVY, D. D. and TEEBOR, G. W., 1991, Site directed substitution of 5-hydroxymethyluracil for thymine in replicating 4a-1 74am3 DNA via synthesis of 5-hydroxymethy1-2'-deoxyuricline-5'-triphosphate. Nucleic Acids Research, 19, 3337–3343.
  • MARNETT, L. J., 2000, Oxyradicals and DNA damage. Carcinogenesis, 21, 361–370.
  • MCCULLOUGH, A. K., DODSON, M. L. and LLOYD, R. S., 1999, Initiation of base excision repair: glycosylase mechanisms and structure. Annual Review of Biochemistry, 68, 255–285.
  • MILLER, J. H., 1972, Experiments in Molecular Genetics (New York: Cold Spring Harbor Laboratories Press).
  • MIYABE, I.5 ZHANG, Q,-M., Kr\ro, K., SUGIYAMA, H., Two, M., YASUI, A. and YONEI, S., 2002, Identification of 5-formyluracil DNA glycosylase activity of human hNTH1 protein. Nucleic Acids Research, 30, 3443–3448.
  • MIYABE, I., ZHANG, Q,-M., SUGIYAMA, H., KINO, K. and YONEI, S., 2001, Mutagenic effects of 5-formyluracil on a plasmid vector during replication in Escherichia coli. International Journal of Radiation Biology, 77, 53–58.
  • MoL, C. D., PARIKH, S. S., PUTNAM C, D., Lo, T. P. and TAINER, J. A., 1999, DNA repair mechanisms for the recognition and removal of damaged DNA bases. Annual Reviews of Biophysics and Biomolecular Structure, 28, 101–128.
  • NASH, H. M., BRUNER, S. D., SCHaRER, 0. D., KAWATE, T., ADDONA, T. A., SPOONER, E., LANE, W. S. and VERDINE, G. L., 1996, Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Current Biology, 6, 968–980.
  • RABOW, L. E. and Kow, Y. W., 1997, Mechanism of action of base release by Escherichia coli Fpg protein: role of lysine 155 in catalysis. Biochemistry, 36, 5084–5096.
  • SENTURKER, S., AUFFRET VAN DER KEMP, P., You, H. J.5 DOETSCH, P. W., DIZDAROGLU, M. and BorrEux, S., 1998, Substrate specificities of the ntg 1 and ntg2 proteins of Sciccharomyces cerevisiae for oxidized DNA bases are not identical. Nucleic Acids Research, 26, 5270–5276.
  • SIDORK1NA, 0. M. and LAVAL, J., 1998, Role of lysine-57 in the catalytic activities of Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg protein). Nucleic Acids Research, 26, 5351–5357.
  • SUGIYAMA, H., MATSUDA, S., ZHANG, Q,-M., YONEI, S. and SAITO, I., 1996, New synthetic method of 5-formyluracil-containing oligonucleotides and their melting behavior. Tetrahedron Letters, 37, 9067–9070.
  • SWANSON, B. L., MOREY, N. J., DOETSCH, P. W. and JINKS-ROBERTSON, S., 1999, Overlapping specificities of base excision repair, nucleotide excision repair, recom-bination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Molecular and Cellular Biology, 19, 2929–2935.
  • TEEBOR, G. W., BOORSTEIN, R. J. and CADET, J., 1988, The reparability of oxidative free radical mediated damage to DNA: a review. International Journal of Radiation Biology, 54, 131–150.
  • TOFIGH, S. and FRENKEL, K., 1989, Effect of metals on nucleoside hydroperoxide, a product of ionizing radiation in DNA. Free Radicals in Biology and Medicine, 7, 131–143.
  • WAGNER, J. R., VAN LIER, J. E.5 DECARROZ, C., BERGER, M. and CADET, J., 1990, Photodynamic methods for oxy radical-induced DNA damage. Methods in Enzymology, 186, 502–511.
  • WALLACE, S. S., 1997, Oxidative damage of DNA and its repair. In J. Scandalios (ed.), Oxidative Stress and the Molecular Biology of Antioxidant Defenses (New York: Cold Spring Harbor Laboratories Press), pp. 49–90.
  • WARNER, H. R., 1994, Superoxide dismutase, aging and degene-rative disease. Free Radicals in Biology and Medicine, 17, 249–258.
  • You, H. J., SWANSON, R. L. and DOETSCH, P. W., 1998, Saccharomyces cerevisiae possesses two functional homo-logues of Escherichia coli endonuclease III. Biochemistry, 37, 6033–6040.
  • ZHANG, Q.-M., 2001, Role of the Escherichia coli and human DNA glycosylases that remove 5-formyluracil from DNA in the prevention of mutations. Journal of Radiation Research, 42, 11–19.
  • ZHANG, Q.-M., FUJIMOTO, J. and YONEI, S., 1995, Enzymatic release of 5-formyluracil by mammalian liver extracts from DNA irradiated with ionizing radiation. International Journal of Radiation Biology, 68, 603–607.
  • ZHANG, Q.-M., MIYABE, I., MATSUMOTO, Y., Kr\ro, K., SUGIYAMA, H. and YONEI, S., 2000, Identification of repair enzymes for 5-formyluracil in DNA. Nth, Nei and MutM proteins of Escherichia coli. Journal of Biological Chemistry, 275, 35471–35477.
  • ZHANG, Q,-M., SUGIYAMA, H., MIYABE, I., MATSUDA, S., KINTO, K., SArro, I. and YONEI, S., 1999, Replication in vitro and cleavage by restriction endonuclease of 5-formyluracil-and 5-hydroxymethyluracil-containing oligonucleotides. International Journal of Radiation Biology, 75, 59–65.
  • ZHANG, Q,-M., SUGIYAMA, H., MIYABE, I., MATSUDA, S., SAITO, I. and YONEI, S., 1997, Replication of DNA templates containing 5-formyluracil, a major oxidative lesion of thymine in DNA. Nucleic Acids Research, 25, 3969–3973.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.