798
Views
134
CrossRef citations to date
0
Altmetric
Original

Candidate protein biodosimeters of human exposure to ionizing radiation

, , & , PhD
Pages 605-639 | Received 10 Mar 2006, Accepted 26 Jul 2006, Published online: 03 Jul 2009

References

  • Ababou M, Dutertre S, Lecluse Y, Onclercq R, Chatton B, Amor-Gueret M. ATM-dependent phosphorylation and accumulation of endogenous BLM protein in response to ionizing radiation. Oncogene 2000; 19: 5955–5963
  • Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, Lee L B, McMahon G, Grone H J, Lipson K E, Huber P E. Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. Journal of Experimental Medicine 2005; 201: 925–935
  • Ahn J Y, Li X, Davis H L, Canman C E. Phosphorylation of theonine 68 promotes oligomerization and autophosphorylation of the Chk2 protein kinase via the forkhead-associated domain. Journal of Biological Chemistry 2002; 277: 19389–19395
  • Ahn J Y, Schwarz J K, Piwnica-Worms H, Canman C E. Theonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Research 2000; 60: 5934–5936
  • Akimoto T, Mitsuhashi N, Saito Y, Ebara T, Niibe H. Effect of radiation on the expression of E-cadherin and alpha-catenin and invasive capacity in human lung cancer cell line in vitro. International Journal of Radiation Biology 1998; 41: 1171–1176
  • Al-Assar O, Robson T, McKeown S R, Gardin I, Wilson G D, Hirst D G. Regulation of FOS by different compartmental stresses induced by low levels of ionizing radiation. Radiation Research 2000; 154: 503–514
  • Amirghahari N, Harrison L, Smith M, Rong X, Naumann I, Ampil F, Shi R, Glass J, Nathan C A. NS 398 radiosensitizes an HNSCC cell line by possibly inhibiting radiation-induced expression of COX-2. International Journal of Radiation Oncology Biology Physics 2003; 57: 1405–1412
  • Amundson S, KT Do, Fornace A J, Jr. Induction of stress genes by low doses of gamma rays. Radiation Research 1999; 152: 225–231
  • Amundson S A, Bittner M, Chen Y, Trent J, Meltzer P, Fornace A JJ. Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress. Oncogene 1999; 18: 3666–3672
  • Amundson S A, Grace M B, McLeland C B, Epperly M W, Yeager A, Zhan Q, Greenberger J S, Fornace A J, Jr. Human in vivo radiation-induced biomarkers: Gene expression changes in radiotherapy patients. Directed Research and Development 04-GRD-076, the US DOE Low Dose Radiation Research Program Grant KP110202 and the LBNL Laboratory Directed Research and Development. Cancer Research 2004; 64: 6368–6371
  • Anderson L, Henderson C, Adachi Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Molecular and Cellular Biology 2001; 21: 1719–1729
  • Anno G H, Baum S J, Withers H, Young R W. Symptomatology of acute radiation effects in humans after exposure to doses of 0.5 – 30 Gy. Health Physics 1989; 56: 821–838
  • Awa A A. Chomosome damage in atomic bomb survivors and their offspring – Hiroshima and Nagasaki. Radiation-induced cytogenetic damage in man, T Ishihara. Alan R. Liss., New York 1983; 433–453
  • Azzam E I, de Toledo S M, Little J B. Expression of CONNEXIN43 is highly sensitive to ionizing radiation and other environmental stresses. Cancer Research 2003; 63: 7128–7135
  • Bakkenist C J, Kastan M B. DNA damage activates ATM though intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421: 499–506
  • Balajee A S, Ponnaiya B, Baskar R, Geard C R. Induction of replication protein A in bystander cells. Radiation Research 2004; 162: 677–686
  • Banin S, Moyal L, Shieh S, Taya Y, Anderson C W, Chessa L, Smorodinsky N I, Prives C, Reiss Y, Shiloh Y, Ziv Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998; 281: 1674–1677
  • Bao S, Tibbetts R S, Brumbaugh K M, Fang Y, Richardson D A, Ali A, Chen S M, Abraham R T, Wang X F. ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature 2001; 411: 969–974
  • Barcellos-Hoff M H. Radiation-induced transforming growth factor beta and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Research 1993; 53: 3880–3886
  • Barcellos-Hoff M H. How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues. Radiation Research 1998; 150: S109–120
  • Beetz A, Messer G, Oppel T, van Beuningen D, Peter R U, Kind P. Induction of interleukin 6 by ionizing radiation in a human epithelial cell line: Control by corticosteroids. International Journal of Radiation Biology 1997; 72: 33–43
  • Beinke C, Van Beuningen D, Cordes N. Ionizing radiation modules of the expression and tyrosine phosphorylation of the focal adhesion-associated proteins focal adhesion kinase (FAK) and its substrates p130cas and paxillin in A549 human lung carcinoma cells in vitro. International Journal of Radiation Biology 2003; 79: 721–731
  • Belka C, Marini P, Budach W, Schulze-Osthoff K, Lang F, Gulbins E, Bamberg M. Radiation-induced apoptosis in human lymphocytes and lymphoma cells critically relies on the up-regulation of CD95/Fas/APO-1 ligand. Radiation Research 1998; 149: 588–595
  • Belka C, Marini P, Lepple-Wienhues A, Budach W, Jekle A, Los M, Lang F, Schulze-Osthoff K, Gulbins E, Bamberg M. The tyrosine kinase lck is required for CD95-independent caspase-8 activation and apoptosis in response to ionizing radiation. Oncogene 1999; 18: 4983–4992
  • Bender M A, Awa A A, Brooks A L, Evans H J, Groer P G, Littlefield L G, Pereira C, Preston R J, Wachholz B W. Current status of cytogenetic procedures to detect and quantify previous exposures to radiation. Mutation Research 1988; 196: 103–159
  • Benderitter M, Durand V, Caux C, Voisin P. Clearance of radiation-induced apoptotic lymphocytes: Ex vivo studies and an in vitro co-culture model. Radiation Research 2002; 158: 464–474
  • Bertho J M, Demarquay C, Frick J, Joubert C, Arenales S, Jacquet N, Sorokine-Durm I, Chau Q, Lopez M, Aigueperse J, Gorin N C, Gourmelon P. Level of Flt3-ligand in plasma: A possible new bio-indicator for radiation-induced aplasia. International Journal of Radiation Biology 2001; 77: 703–712
  • Bhoumik A, Takahashi S, Breitweiser W, Shiloh Y, Jones N, Ronai Z. ATM-dependent phosphorylation of ATF2 is required for the DNA damage response. Molecular Cell 2005; 18: 577–587
  • Bischof O, Kim S H, Irving J, Beresten S, Ellis N A, Campisi J. Regulation and localization of the Bloom syndrome protein in response to DNA damage. Journal of Cell Biology 2001; 153: 367–380
  • Blakely W F, Miller A C, Grace M B, McLeland C B, Luo L, Muderhwa J M, Miner V L, Prasanna P G. Radiation biodosimetry: Applications for spaceflight. Advances in Space Research 2003; 31: 1487–1493
  • Blakely W F, Prasanna P G, Grace M B, Miller A C. Radiation exposure assessment using cytological and molecular biomarkers. Radiation Protection Dosimetry 2001; 97: 17–23
  • Blattner C, Sparks A, Lane D. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Molecular Cell Biology 1999; 19: 3704–3713
  • Block W D, Yu Y, Lees-Miller S P. Phosphatidyl inositol 3-kinase-like serine/theonine protein kinases (PIKKs) are required for DNA damage-induced phosphorylation of the 32 kDa subunit of replication protein A at theonine 21. Nucleic Acids Research 2004; 32: 997–1005
  • Bo Z, Yongping S, Fengchao W, Guoping A, Yongjiang W. Identification of differentially expressed proteins of gamma-ray irradiated rat intestinal epithelial IEC-6 cells by two-dimensional gel electrophoresis and matrix – assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2005; 5: 426–432
  • Bouvard V, Zaitchouk T, Vacher M, Duthu A, Canivet M, Choisy-Rossi C, Nieruchalski M, May E. Tissue and cell-specific expression of the p53-target genes: Bax, fas, mdm2 and waf1/p21, before and following ionising irradiation in mice. Oncogene 2000; 19: 649–660
  • Bowers G, Reardon D, Hewitt T, Dent P, Mikkelsen R B, Valerie K, Lammering G, Amir C, Schmidt-Ullrich R K. The relative role of ErbB1-4 receptor tyrosine kinases in radiation signal transduction responses of human carcinoma cells. Oncogene 2001; 20: 1388–1397
  • Brach M A, Gruss H J, Kaisho T, Asano Y, Hirano T, Herrmann F. Ionizing radiation induces expression of interleukin 6 by human fibroblasts involving activation of nuclear factor-kappa B. Journal of Biological Chemistry 1993; 268: 8466–8472
  • Brach M A, Hass R, Sherman M L, Gunji H, Weichselbaum R, Kufe D. Ionizing radiation induces expression and binding activity of the nuclear factor kappa B. Journal of Clinical Investigation 1991; 88: 691–695
  • Brooks A L. Biomarkers of exposure, sensitivity anddisease. International Journal of Radiation Biology 1999; 75: 1481–1503
  • Brooks A L. Biomarkers of exposure and dose: State of the art. Radiation Protection Dosimetry 2001; 97: 39–46
  • Brown A L, Lee C H, Schwarz J K, Mitiku N, Piwnica-Worms H, Chung J H. A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proceedings of the National Academy of Sciences USA 1999; 96: 3745–3750
  • Brown K D, Lataxes T A, Shangary S, Mannino J L, Giardina J F, Chen J, Baskaran R. Ionizing radiation exposure results in up-regulation of Ku70 via a p53/ataxia-telangiectasia-mutated protein-dependent mechanism. Journal of Biological Chemistry 2000; 275: 6651–6656
  • Brumbaugh K M, Otterness D M, Geisen C, Oliveira V, Brognard J, Li X, Lejeune F, Tibbetts R S, Maquat L E, Abraham R T. The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Molecular Cell 2004; 14: 585–598
  • Burma S, Chen B P, Murphy M, Kurimasa A, Chen D J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. Journal of Biological Chemistry 2001; 276: 42462–42467
  • Burma S, Chen D J. Role of DNA-PK in the cellular response to DNA double-strand breaks. DNA Repair (Amsterdam) 2004; 3: 909–918
  • Burns T F, Bernhard E J, El-Deiry W S. Tissue specific expression of p53 target genes suggests a key role for KILLER/DR5 in p53-dependent apoptosis in vivo. Oncogene 2001; 20: 4601–4612
  • Buscemi G, Savio C, Zannini L, Micciche F, Masnada D, Nakanishi M, Tauchi H, Komatsu K, Mizutani S, Khanna K, Chen P, Concannon P, Chessa L, Delia D. Chk2 activation dependence on Nbs1 after DNA damage. Molecular Cell Biology 2001; 21: 5214–5222
  • Canman C E, Lim D S, Cimprich K A, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan M B, Siliciano J D. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998; 281: 1677–1679
  • Cariveau M J, Kovacs C J, Allison R R, Johnke R M, Kalmus G W, Evans M. The expression of p21/WAF-1 and cyclin B1 mediate mitotic delay in x-irradiated fibroblasts. Anticancer Research 2005; 25: 1123–1129
  • Cerosaletti K, Concannon P. Independent roles for nibrin and Mre11-Rad50 in the activation and function of Atm. Journal of Biological Chemistry 2004; 279: 38813–38819
  • Chan D W, Chen B P, Prithivirajsingh S, Kurimasa A, Story M D, Qin J, Chen D J. Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes and Development 2002; 16: 2333–2338
  • Chao C, Saito S, Anderson C W, Appella E, Xu Y. Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proceedings of the National Academy of Sciences USA 2000; 97: 11936–11941
  • Chaturvedi P, Eng W K, Zhu Y, Mattern M R, Misha R, Hurle M R, Zhang X, Annan R S, Lu Q, Faucette L F, Scott G F, Li X, Carr S A, Johnson R K, Winkler J D, Zhou B B. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 1999; 18: 4047–4054
  • Chee M, Yang R, Hubbell E, Berno A, Huang X C, Stern D, Winkler J, Lockhart D J, Morris M S, Fodor S P. Accessing genetic information with high-density DNA arrays. Science 1996; 274: 610–614
  • Chen B P, Chan D W, Kobayashi J, Burma S, Asaithamby A, Morotomi-Yano K, Botvinick E, Qin J, Chen D J. Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks. Journal of Biological Chemistry 2005a; 280: 14709–14715
  • Chen C, Boylan M T, Evans C A, Whetton A D, Wright E G. Application of two-dimensional difference gel electrophoresis to studying bone marrow macrophages and their in vivo responses to ionizing radiation. Journal of Proteome Research 2005b; 4: 1371–1380
  • Chen C, Lorimore S A, Evans C A, Whetton A D, Wright E G. A proteomic analysis of murine bone marrow and its response to ionizing radiation. Proteomics 2005c; 5: 4254–4263
  • Chen C, Shimizu S, Tsujimoto Y, Motoyama N. Chk2 regulates transcription-independent p53-mediated apoptosis in response to DNA damage. Biochemical and Biophysical Research Communications 2005d; 333: 427–431
  • Chen G, Yuan S S, Liu W, Xu Y, Trujillo K, Song B, Cong F, Goff S P, Wu Y, Arlinghaus R, Baltimore D, Gasser P J, Park M S, Sung P, Lee E Y. Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. Journal of Biological Chemistry 1999; 274: 12748–12752
  • Chen I W, Kereiakes J G, Silberstein E B, Aron B S, Saenger E L. Radiation-induced change in serum and urinary amylase levels in man. Radiation Research 1973; 54: 141–151
  • Chen M J, Lin Y T, Lieberman H B, Chen G, Lee E Y. ATM-dependent phosphorylation of human Rad9 is required for ionizing radiation-induced checkpoint activation. Journal of Biological Chemistry 2001; 276: 16580–16586
  • Chen Y R, Meyer C F, Tan T H. Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis. Journal of Biological Chemistry 1996; 271: 631–634
  • Cheng X, Cheong N, Wang Y, Iliakis G. Ionizing radiation-induced phosphorylation of RPA p34 is deficient in ataxia telangiectasia and reduced in aged normal fibroblasts. Radiotherapy and Oncology 1996; 39: 43–52
  • Chng W J, Tan G B, Kuperan P. Establishment of adult peripheral blood lymphocyte subset reference range for an Asian population by single-platform flow cytometry: Influence of age, sex, and race and comparison with other published studies. Clinical and Diagnostic Laboratory Immunology 2004; 11: 168–173
  • Cho E S, Lee S B, Bae I H, Lee Y S, Lee S J, Um H D. Ionizing radiation induces blockade of c-Jun N-terminal kinase-dependent cell death pathway in a manner correlated with p21(Cip/WAF1) induction in primary cultured normal human fibroblasts. Experimental and Molecular Medicine 2005; 37: 282–289
  • Chong M J, Murray M R, Gosink E C, Russell H, Srinivasan A, Kapsetaki M, Korsmeyer S J, McKinnon P J. Atm and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. Proceedings of the National Academy of Sciences USA 2000; 97: 889–894
  • Christensen M E, Hansen H S, Poulsen S S, Bretlau P, Nexo E. Immunohistochemical and quantitative changes in salivary EGF, amylase and haptocorrin following radiotherapy for oral cancer. Acta Otolaryngologica 1996; 116: 137–143
  • Coleman M A, Yin E, Peterson L E, Nelson D, Sorensen K, Tucker J D, Wyrobek A J. Low-dose irradiation alters the transcript profiles of human lymphoblastoid cells including genes associated with cytogenetic radioadaptive response. Radiation Research 2005; 164: 369–382
  • Cologne J B, Preston D L. Longevity of atomic bomb survivors. Lancet 2000; 356: 303–307
  • Contessa J N, Hampton J, Lammering G, Mikkelsen R B, Dent P, Valerie K, Schmidt-Ullrich R K. Ionizing radiation activates Erb-B receptor dependent Akt and p70 S6 kinase signaling in carcinoma cells. Oncogene 2002; 21: 4032–4041
  • Cordes N, Blaese M A, Meineke V, Van Beuningen D. Ionizing radiation induces up-regulation of functional beta1-integrin in human lung tumour cell lines in vitro. International Journal of Radiation Biology 2002; 78: 347–357
  • Cortez D, Wang Y, Qin J, Elledge S J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 1999; 286: 1162–1166
  • Criswell T, Beman M, Araki S, Leskov K, Cataldo E, Mayo L D, Boothman D A. Delayed activation of insulin-like growth factor-1 receptor/Src/MAPK/Egr-1 signaling regulates clusterin expression, a pro-survival factor. Journal of Biological Chemistry 2005; 280: 14212–14221
  • Dainiak N, Waselenko J K, Armitage J O, MacVittie T J, Farese A M. The hematologist and radiation casualties. Hematology (Am Soc Hematol Educ Program) 2003; 473–496
  • Dang T, Bao S, Wang X F. Human Rad9 is required for the activation of S-phase checkpoint and the maintenance of chomosomal stability. Genes to Cells 2005; 10: 287–295
  • de Toledo S M, Azzam E I, Dahlberg W K, Gooding T B, Little J B. ATM complexes with HDM2 and promotes its rapid phosphorylation in a p53-independent manner in normal and tumor human cells exposed to ionizing radiation. Oncogene 2000; 19: 6185–6193
  • Dittmann K, Mayer C, Fehenbacher B, Schaller M, Raju U, Milas L, Chen D J, Kehlbach R, Rodemann H P. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. Journal of Biological Chemistry 2005; 280: 31182–31189
  • DiTullio R A, Jr, Mochan T A, Venere M, Bartkova J, Sehested M, Bartek J, Halazonetis T D. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nature Cell Biology 2002; 4: 998–1002
  • Dong Z, Zhong Q, Chen P L. The Nijmegen breakage syndrome protein is essential for Mre11 phosphorylation upon DNA damage. Journal of Biological Chemistry 1999; 274: 19513–19516
  • Donnadieu-Claraz M, Benderitter M, Joubert C, Voisin P. Biochemical indicators of whole-body gamma-radiation effects in the pig. International Journal of Radiation Biology 1999; 75: 165–174
  • Dubray B, Girinski T, Thames H D, Becciolini A, Porciani S, Hennequin C, Socie G, Bonnay M, Cosset J M. Post-irradiation hyperamylasemia as a biological dosimeter. Radiotherapy and Oncology 1992; 24: 21–26
  • Dudoit S, Yang Y H, Callow M, Speed T P. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. University of California, Berkeley, CA 2000
  • Dutertre S, Sekhi R, Tintignac L A, Onclercq-Delic R, Chatton B, Jaulin C, Amor-Gueret M. Dephosphorylation and subcellular compartment change of the mitotic Bloom's syndrome DNA helicase in response to ionizing radiation. Journal of Biological Chemistry 2002; 277: 6280–6286
  • Edwards E, Geng L, Tan J, Onishko H, Donnelly E, Hallahan D E. Phosphatidylinositol 3-kinase/Akt signaling in the response of vascular endothelium to ionizing radiation. Cancer Research 2002; 62: 4671–4677
  • Ehhart E J, Segarini P, Tsang M L, Carroll A G, Barcellos-Hoff M H. Latent transforming growth factor beta1 activation in situ: Quantitative and functional evidence after low-dose gamma-irradiation. FASEB Journal 1997; 11: 991–1002
  • El-Deiry W S, Tokino T, Velculescu V E, Levy D B, Parsons R, Trent J M, Lin D, Mercer W E, Kinzler K W, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825
  • Ely M J, Speicher J M, Catravas G N, Snyder S L. Radiation effects on diamine oxidase activities in intestine and plasma of the rat. Radiation Research 1985; 103: 158–162
  • Enomoto A, Suzuki N, Kang Y, Hirano K, Matsumoto Y, Zhu J, Morita A, Hosoi Y, Sakai K, Koyama H. Decreased c-Myc expression and its involvement in X-ray-induced apoptotic cell death of human T-cell leukaemia cell line MOLT-4. International Journal of Radiation Biology 2003a; 79: 589–600
  • Enomoto A, Suzuki N, Morita A, Ito M, Liu C Q, Matsumoto Y, Yoshioka K, Shiba T, Hosoi Y. Caspase-mediated cleavage of JNK during stress-induced apoptosis. Biochemical and Biophysical Research Communications 2003b; 306: 837–842
  • Ewan K B, Henshall-Powell R L, Ravani S A, Pajares M J, Arteaga C, Warters R, Akhurst R J, Barcellos-Hoff M H. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ. Cancer Research 2002; 62: 5627–5631
  • Falck J, Mailand N, Syljuasen R G, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001; 410: 842–847
  • Falck J, Petrini J H, Williams B R, Lukas J, Bartek J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nature Genetics 2002; 30: 290–294
  • Fedorocko P, Egyed A, Vacek A. Irradiation induces increased production of haemopoietic and proinflammatory cytokines in the mouse lung. International Journal of Radiation Biology 2002; 78: 305–313
  • Fei P, Bernhard E J, El-Deiry W S. Tissue-specific induction of p53 targets in vivo. Cancer Research 2002; 62: 7316–7327
  • Fernandez-Capetillo O, Chen H T, Celeste A, Ward I, Romanienko P J, Morales J C, Naka K, Xia Z, Camerini-Otero R D, Motoyama N, Carpenter P B, Bonner W M, Chen J, Nussenzweig A. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nature Cell Biology 2002; 4: 993–997
  • Fernet M, Hall J. Genetic biomarkers of therapeutic radiation sensitivity. DNA Repair (Amsterdam) 2004; 3: 1237–1243
  • Foray N, Marot D, Gabriel A, Randrianarison V, Carr A M, Perricaudet M, Ashworth A, Jeggo P. A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO Journal 2003; 22: 2860–2871
  • Foray N, Marot D, Randrianarison V, Venezia N D, Picard D, Perricaudet M, Favaudon V, Jeggo P. Constitutive association of BRCA1 and c-Abl and its ATM-dependent disruption after irradiation. Molecular and Cell Biology 2002; 22: 4020–4032
  • Fornace A J, Amundson S A, Bittner M, Myers T G, Meltzer P, Weinsten J N, Trent J. The complexity of radiation stress responses: Analysis by informatics and functional genomics approaches. Gene Expression 1999; 7: 387–400
  • Fried L M, Koumenis C, Peterson S R, Green S L, van Zijl P, Allalunis-Turner J, Chen D J, Fishel R, Giaccia A J, Brown J M, Kirchgessner C U. The DNA damage response in DNA-dependent protein kinase-deficient SCID mouse cells: Replication protein A hyperphosphorylation and p53 induction. Proceedings of the National Academy of Sciences USA 1996; 93: 13825–13830
  • Funegard U, Franzen L, Ericson T, Henriksson R. Parotid saliva composition during and after irradiation of head and neck cancer. European Journal of Cancer B Oral Oncology 1994; 30B: 230–233
  • Gajdusek C, Onoda K, London S, Johnson M, Morrison R, Mayberg M. Early molecular changes in irradiated aortic endothelium. Journal of Cell Physiology 2001; 188: 8–23
  • Gatei M, Scott S P, Filippovitch I, Soronika N, Lavin M F, Weber B, Khanna K K. Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Research 2000a; 60: 3299–3304
  • Gatei M, Sloper K, Sorensen C, Syljuasen R, Falck J, Hobson K, Savage K, Lukas J, Zhou B B, Bartek J, Khanna K K. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. Journal of Biological Chemistry 2003; 278: 14806–14811
  • Gatei M, Young D, Cerosaletti K M, Desai-Mehta A, Spring K, Kozlov S, Lavin M F, Gatti R A, Concannon P, Khanna K. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nature Genetics 2000b; 25: 115–119
  • Gatei M, Zhou B B, Hobson K, Scott S, Young D, Khanna K K. Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phosphor-specific antibodies. Journal of Biological Chemistry 2001; 276: 17276–17280
  • Gaugler M H, Squiban C, van der Meeren A, Bertho J M, Vandamme M, Mouthon M A. Late and persistent up-regulation of intercellular adhesion molecule-1 (ICAM-1) expression by ionizing radiation in human endothelial cells in vitro. International Journal of Radiation Biology 1997; 72: 201–209
  • Ghosh J C, Izumida Y, Suzuki K, Kodama S, Watanabe M. Dose-dependent biphasic accumulation of TP53 protein in normal human embryo cells after X irradiation. Radiation Research 2000; 153: 305–311
  • Girard P M, Riballo E, Begg A C, Waugh A, Jeggo P A. Nbs1 promotes ATM dependent phosphorylation events including those required for G1/S arrest. Oncogene 2002; 21: 4191–4199
  • Girinsky T A, Pallardy M, Comoy E, Benassi T, Roger R, Ganem G, Cosset J M, Socie G, Magdelenat H. Peripheral blood corticotropin – releasing factor, adrenocorticotropic hormone and cytokine (interleukin beta, interleukin 6, tumor necrosis factor alpha) levels after high- and low-dose total-body irradiation in humans. Radiation Research 1994; 139: 360–363
  • Goans R E, Holloway E C, Berger M E, Ricks R C. Early dose assessment following severe radiation accidents. Health Physics 1997; 72: 513–518
  • Gobe G C, Halliday J, Dunn I S, Harmon B V, Schoch E, Khan S M, Allan D J. Expression and localization of the retinoblastoma gene during radiation-induced apoptosis in neonatal rat kidney. Experimental Cell Research 1997; 235: 354–361
  • Goldberg M, Stucki M, Falck J, D'Amours D, Rahman D, Pappin D, Bartek J, Jackson S P. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 2003; 421: 952–956
  • Gong B, Almasan A. Apo2 ligand/TNF-related apoptosis-inducing ligand and death receptor 5 mediate the apoptotic signaling induced by ionizing radiation in leukemic cells. Cancer Research 2000; 60: 5754–5760
  • Gorski D H, Beckett M A, Jaskowiak N T, Calvin D P, Mauceri H J, Salloum R M, Seetharam S, Koons A, Hari D M, Kufe D W, Weichselbaum R R. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Research 1999; 59: 3374–3378
  • Grace M B, McLeland C B, Blakely W F. Real-time quantitative RT-PCR assay of GADD45 gene expression changes as a biomarker for radiation biodosimetry. International Journal of Radiation Biology 2002; 78: 1011–1021
  • Griffiths N M, Linard C, Dublineau I, Francois A, Esposito V, Neelis K J, Niemer-Tucker M M, van der Hage M, Broerse J J, Wagemaker G. Long-term effects of X-irradiation on gastrointestinal function and regulatory peptides in monkeys. International Journal of Radiation Biology 1999; 75: 183–191
  • Guida P, Vazquez M E, Otto S. Cytotoxic effects of low- and high-LET radiation on human neuronal progenitor cells:induction of apoptosis and TP53 gene expression. Radiation Research 2005; 164: 545–551
  • Gupta A, Sharma G G, Young C S, Agarwal M, Smith E R, Paull T T, Lucchesi J C, Khanna K K, Ludwig T, Pandita T K. Involvement of human MOF in ATM function. Molecular Cell Biology 2005; 25: 5292–5305
  • Haase M, Geyer P, Appold S, Schuh D, Kasper M, Muller M. Down-regulation of SP1 DNA binding activity in the process of radiation-induced pulmonary fibrosis. International Journal of Radiation Biology 2000; 76: 487–492
  • Haase M G, Klawitter A, Geyer P, Alheit H, Baumann M, Kriegel T M, Kasper M, Baretton G B. Sustained elevation of NF-kappaB DNA binding activity in radiation-induced lung damage in rats. International Journal of Radiation Biology 2003; 79: 863–877
  • Haveman J, Geerdink A G, Rodermond H M. TNF, IL-1 and IL-6 in circulating blood after total-body and localized irradiation in rats. Oncology Reports 1998; 5: 679–683
  • Hayashi T, Kusunoki Y, Hakoda M, Morishita Y, Kubo Y, Maki M, Kasagi F, Kodama K, Macphee D G, Kyoizumi S. Radiation dose-dependent increases in inflammatory response markers in A-bomb survivors. International Journal of Radiation Biology 2003; 79: 129–136
  • Hertveldt K, Philippe J, Thierens H, Cornelissen M, Vral A, De Ridder L. Flow cytometry as a quantitative and sensitive method to evaluate low dose radiation induced apoptosis in vitro in human peripheral blood lymphocytes. International Journal of Radiation Biology 1997; 71: 429–433
  • Herzog K H, Chong M J, Kapsetaki M, Morgan J I, McKinnon P J. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 1998; 280: 1089–1091
  • Higashimoto Y, Saito S, Tong X H, Hong A, Sakaguchi K, Appella E, Anderson C W. Human p53 is phosphorylated on serines 6 and 9 in response to DNA damage-inducing agents. Journal of Biological Chemistry 2000; 275: 23199–23203
  • Hirai Y, Hayashi T, Kubo Y, Hoki Y, Arita I, Tatsumi K, Seyama T. X-irradiation induces up-regulation of ATM gene expression in wild-type lymphoblastoid cell lines, but not in their heterozygous or homozygous ataxia-telangiectasia counterparts. Japanese Journal of Cancer Research 2001; 92: 710–717
  • Hirao A, Kong Y Y, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge S J, Mak T W. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 2000; 287: 1824–1827
  • Horejsi Z, Falck J, Bakkenist C J, Kastan M B, Lukas J, Bartek J. Distinct functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low doses of ionizing radiation. Oncogene 2004; 23: 3122–3127
  • Hovinga K E, Stalpers L J, van Bree C, Donker M, Verhoeff J J, Rodermond H M, Bosch D A, van Furth W R. Radiation-enhanced vascular endothelial growth factor (VEGF) secretion in glioblastoma multiforme cell lines – a clue to radioresistance?. Journal of Neurooncology 2005; 74: 99–103
  • Huang Y, Ishiko T, Nakada S, Utsugisawa T, Kato T, Yuan Z M. Role for E2F in DNA damage-induced entry of cells into S phase. Cancer Research 1997; 57: 3640–3643
  • Huchet A, Belkacemi Y, Frick J, Prat M, Muresan-Kloos I, Altan D, Chapel A, Gorin N C, Gourmelon P, Bertho J M. Plasma Flt-3 ligand concentration correlated with radiation-induced bone marrow damage during local fractionated radiotherapy. International Journal of Radiation Oncology Biology Physics 2003; 57: 508–515
  • International Atomic Energy Agency (IAEA). Cytogenetic analysis for radiation dose assessment. Vienna. 2001
  • Ismail I H, Nystrom S, Nygren J, Hammarsten O. Activation of ataxia telangiectasia mutated by DNA strand break-inducing agents correlates closely with the number of DNA double strand breaks. Journal of Biological Chemistry 2005; 280: 4649–4655
  • Issaq H J, Conrads T P, Prieto D A, Tirumalai R, Veenstra T D. SELDI-TOF MS for diagnostic proteomics. Analytical Chemistry 2003; 75: 148A–155A
  • Itakura E, Umeda K, Sekoguchi E, Takata H, Ohsumi M, Matsuura A. ATR-dependent phosphorylation of ATRIP in response to genotoxic stress. Biochemical and Biophysical Research Communications 2004; 323: 1197–1202
  • Jain K K. Proteomics-based anticancer drug discovery and development. Technology in Cancer Research and Treatment 2002; 1: 231–236
  • James S E, Arlett C F, Green M H, Bridges B A. Radiosensitivity of human T-lymphocytes proliferating in long-term culture. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 1983; 44: 417–422
  • Johnson M D, Xiang H, London S, Kinoshita Y, Knudson M, Mayberg M, Korsmeyer S J, Morrison R S. Evidence for involvement of Bax and p53, but not caspases, in radiation-induced cell death of cultured postnatal hippocampal neurons. Journal of Neuroscience Research 1998; 54: 721–733
  • Jones I M, Tucker J D, Langlois R G, Mendelsohn M L, Pleshanov P, Nelson D O. Evaluation of thee somatic genetic biomarkers as indicators of low dose radiation effects in clean-up workers of the Chernobyl nuclear reactor accident. Radiation Protection Dosimetry 2001; 97: 61–67
  • Jowsey P A, Doherty A J, Rouse J. Human PTIP facilitates ATM-mediated activation of p53 and promotes cellular resistance to ionizing radiation. Journal of Biological Chemistry 2004; 279: 55562–55569
  • Ju G Z, Wang X M, Fu S B, Liu S Z. Effect of ionizing radiation on the expression of p16, cyclinD1 and CDK4 in mouse thymocytes and splenocytes. Biomedical and Environmental Sciences 2003; 16: 47–52
  • Kang C M, Park K P, Song J E, Jeoung D I, Cho C K, Kim T H, Bae S, Lee S J, Lee Y S. Possible biomarkers for ionizing radiation exposure in human peripheral blood lymphocytes. Radiation Research 2003; 159: 312–319
  • Kang J, Ferguson D, Song H, Bassing C, Eckersdorff M, Alt F W, Xu Y. Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression. Molecular Cell Biology 2005; 25: 661–670
  • Kang Y, Hirano K, Suzuki N, Enomoto A, Morita A, Irimura T, Sakai K. Increased expression after X-irradiation of MUC1 in cultured human colon carcinoma HT-29 cells. Japanese Journal of Cancer Research 2000; 91: 324–330
  • Kasid U, Suy S, Dent P, Ray S, Whiteside T L, Sturgill T W. Activation of Raf by ionizing radiation. Nature 1996; 382: 813–816
  • Khanna K K, Keating K E, Kozlov S, Scott S, Gatei M, Hobson K, Taya Y, Gabrielli B, Chan D, Lees-Miller S P, Lavin M F. ATM associates with and phosphorylates p53: Mapping the region of interaction. Nature Genetics 1998; 20: 398–400
  • Kharbanda S, Ren R, Pandey P, Shafman T D, Feller S M, Weichselbaum R R, Kufe D W. Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature 1995; 376: 785–788
  • Kharbanda S, Saleem A, Shafman T, Emoto Y, Weichselbaum R, Kufe D. Activation of the pp90rsk and mitogen-activated serine/theonine protein kinases by ionizing radiation. Proceedings of the National Academy of Sciences USA 1994a; 91: 5416–5420
  • Kharbanda S, Yuan Z M, Rubin E, Weichselbaum R, Kufe D. Activation of Src-like p56/p53lyn tyrosine kinase by ionizing radiation. Journal of Biological Chemistry 1994b; 269: 20739–20743
  • Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proceedings of the National Academy of Sciences USA 1999; 96: 14973–14977
  • Kim B C, Shon B S, Ryoo Y W, Kim S P, Lee K S. Melatonin reduces X-ray irradiation-induced oxidative damages in cultured human skin fibroblasts. Journal of Dermatological Science 2001; 26: 194–200
  • Kim K M, Zhang Y, Kim B Y, Jeong S J, Lee S A, Kim G D, Dritschilo A, Jung M. The p65 subunit of nuclear factor-kappaB is a molecular target for radiation sensitization of human squamous carcinoma cells. Molecular Cancer Therapeutics 2004; 3: 693–698
  • Kim K U, Xiao J, Ni H T, Cho K H, Spellman S R, Low W C, Hall W A. Changes in expression of transferrin, insulin-like growth factor 1, and interleukin 4 receptors after irradiation of cells of primary malignant brain tumor cell lines. Radiation Research 2003; 160: 224–231
  • Kim S T, Xu B, Kastan M B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes and Development 2002; 16: 560–570
  • Kitagawa R, Bakkenist C J, McKinnon P J, Kastan M B. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes and Development 2004; 18: 1423–1438
  • Kobayashi J, Tauchi H, Sakamoto S, Nakamura A, Morishima K, Matsuura S, Kobayashi T, Tamai K, Tanimoto K, Komatsu K. NBS1 localizes to gamma-H2AX foci though interaction with the FHA/BRCT domain. Current Biology 2002; 12: 1846–1851
  • Komarova E A, Chistov K, Faerman A I, Gudkov A V. Different impact of p53 and p21 on the radiation response of mouse tissues. Oncogene 2000; 19: 3791–3798
  • Kondo Y, Liu J, Haqqi T, Barna B P, Kondo S. Involvement of interleukin-1beta-converting enzyme in apoptosis of irradiated retinoblastomas. Investigative Ophthalmology and Visual Science 1998; 39: 2769–2774
  • Kool J, Hamdi M, Cornelissen-Steijger P, van der Eb A J, Terleth C, van Dam H. Induction of ATF3 by ionizing radiation is mediated via a signaling pathway that includes ATM, Nibrin1, stress-induced MAPkinases and ATF-2. Oncogene 2003; 22: 4235–4242
  • Kovalchuk O, Ponton A, Filkowski J, Kovalchuk I. Dissimilar genome response to acute and chonic low-dose radiation in male and female mice. Mutation Research 2004; 550: 59–72
  • Krieg R C, Fogt F, Braunschweig T, Herrmann P C, Wollscheidt V, Wellmann A. ProteinChip Array analysis of microdissected colorectal carcinoma and associated tumor stroma shows specific protein bands in the 3.4 to 3.6 kDa range. Anticancer Research 2004; 24: 1791–1796
  • Kukar T, Eckenrode S, Gu Y, Lian W, Megginson M, She J X, Wu D. Protein microarrays to detect protein-protein interactions using red and green fluorescent proteins. Analytical Biochemistry 2002; 306: 50–54
  • Kulikov R, Boehme K A, Blattner C. Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance. Molecular Cell Biology 2005; 25: 7170–7180
  • Kumaravel T S, Bharathy K, Kudoh S, Tanaka K, Kamada N. Expression, localization and functional interactions of Ku70 subunit of DNA-PK in peripheral lymphocytes and Nalm-19 cells after irradiation. International Journal of Radiation Biology 1998; 74: 481–489
  • Kuo M L, Kinsella T J. Expression of ribonucleotide reductase after ionizing radiation in human cervical carcinoma cells. Cancer Research 1998; 58: 2245–2252
  • Kurz E U, Lees-Miller S P. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amsterdam) 2004; 3: 889–900
  • Lee J H, Xu B, Lee C H, Ahn J Y, Song M S, Lee H, Canman C E, Lee J S, Kastan M B, Lim D S. Distinct functions of Nijmegen breakage syndrome in ataxia telangiectasia mutated-dependent responses to DNA damage. Molecular Cancer Research 2003; 1: 674–681
  • Lee J S, Collins K M, Brown A L, Lee C H, Chung J H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 2000; 404: 201–204
  • Lee S A, Dritschilo A, Jung M. Impaired ionizing radiation-induced activation of a nuclear signal essential for phosphorylation of c-Jun by dually phosphorylated c-Jun amino-terminal kinases in ataxia telangiectasia fibroblasts. Journal of Biological Chemistry 1998a; 273: 32889–32894
  • Lee S A, Dritschilo A, Jung M. Role of ATM in oxidative stress-mediated c-Jun phosphorylation in response to ionizing radiation and CdCl2. Journal of Biological Chemistry 2001; 276: 11783–11790
  • Lee S J, Dimtchev A, Lavin M F, Dritschilo A, Jung M. A novel ionizing radiation-induced signaling pathway that activates the transcription factor NF-kappaB. Oncogene 1998b; 17: 1821–1826
  • Lehy T, Dessirier V, Attoub S, Bado A, Griffiths N M, Linard C. Exposure to ionizing radiation modifies circulating gastrin levels and gastrointestinal endocrine cells densities in the rat. International Journal of Radiation Biology 1998; 73: 331–340
  • Li S, Chen P L, Subramanian T, Chinnadurai G, Tomlinson G, Osborne C K, Sharp Z D, Lee W H. Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. Journal of Biological Chemistry 1999; 274: 11334–11338
  • Li S, Ting N S, Zheng L, Chen P L, Ziv Y, Shiloh Y, Lee E Y, Lee W H. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 2000; 406: 210–215
  • Lim D S, Kim S T, Xu B, Maser R S, Lin J, Petrini J H, Kastan M B. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 2000; 404: 613–617
  • Lin A L, Johnson D A, Wu Y, Wong G, Ebersole J L, Yeh C K. Measuring short-term gamma-irradiation effects on mouse salivary gland function using a new saliva collection device. Archives of Oral Biology 2001; 46: 1085–1089
  • Lin J, Ju H. Electrochemical and chemiluminescent immunosensors for tumor markers. Biosensors and Bioelectronics 2005; 20: 1461–1470
  • Lipshutz R J, Fodor S P, Gingeras T R, Lockhart D J. High density synthetic oligonucleotide arrays. Nature Genetics 1999; 21: 20–24
  • Liu Q, Guntuku S, Cui X S, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower L A, Elledge S J. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes and Development 2000; 14: 1448–1459
  • Liu V F, Weaver D T. The ionizing radiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cells. Molecular Cell Biology 1993; 13: 7222–7231
  • Lockhart D J, Dong H, Byrne M C, Follettie M T, Gallo M V, Chee M A, Mittman M, Wang C, Kobayashi M, Horton H, Brown E L. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology 1996; 14: 1675–1680
  • Lou Z, Chini C C, Minter-Dykhouse K, Chen J. Mediator of DNA damage checkpoint protein 1 regulates BRCA1 localization and phosphorylation in DNA damage checkpoint control. Journal of Biological Chemistry 2003a; 278: 13599–13602
  • Lou Z, Minter-Dykhouse K, Wu X, Chen J. MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 2003b; 421: 957–961
  • Lu X, de la Pena L, Barker C, Camphausen K, Tofilon P J. Radiation-induced changes in gene expression involve recruitment of existing messenger RNAs to and away from polysomes. Cancer Research 2006; 66: 1052–1061
  • Lucas J, Awa A, Straume T, Poggensee M, Kodama Y, Nakano M, Ohtaki K, Weier H, Pinkel D, Gray J, Littlefield G. Rapid translocation frequency analysis in human decades after exposure to ionizing radiation. International Journal of Radiation Biology 1992; 62: 53–63
  • Lukas C, Bartkova J, Latella L, Falck J, Mailand N, Schoeder T, Sehested M, Lukas J, Bartek J. DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Research 2001; 61: 4990–4993
  • Lynch A M, Moore M, Craig S, Lonergan P E, Martin D S, Lynch M A. Analysis of interleukin-1 beta-induced cell signaling activation in rat hippocampus following exposure to gamma irradiation. Protective effect of eicosapentaenoic acid. Journal of Biological Chemistry 2003; 278: 51075–51084
  • MacCallum D E, Hupp T R, Midgley C A, Stuart D, Campbell S J, Harper A, Walsh F S, Wright E G, Balmain A, Lane D P, Hall P A. The p53 response to ionising radiation in adult and developing murine tissues. Oncogene 1996; 13: 2575–2587
  • Magic Z, Matic-Ivanovic S, Savic J, Poznanovic G. Ionizing radiation-induced expression of the genes associated with the acute response to injury in the rat. Radiation Research 1995; 143: 187–193
  • Maier H, Bihl H. Effect of radioactive iodine therapy on parotid gland function. Acta Otolaryngologica 1987; 103: 318–324
  • Mailand N, Falck J, Lukas C, Syljuasen R G, Welcker M, Bartek J, Lukas J. Rapid destruction of human Cdc25A in response to DNA damage. Science 2000; 288: 1425–1429
  • Maki C G, Howley P M. Ubiquitination of p53 and p21 is differentially affected by ionizing and UV radiation. Molecular Cell Biology 1997; 17: 355–363
  • Makkonen T A, Tenovuo J, Vilja P, Heimdahl A. Changes in the protein composition of whole saliva during radiotherapy in patients with oral or pharyngeal cancer. Oral Surgery, Oral Medicine and Oral Pathology 1986; 62: 270–275
  • Mamon H J, Dahlberg W, Azzam E I, Nagasawa H, Muto M G, Little J B. Differing effects of breast cancer 1, early onset (BRCA1) and ataxia – telangiectasia mutated (ATM) mutations on cellular responses to ionizing radiation. International Journal of Radiation Biology 2003; 79: 817–829
  • Martin M, Vozenin M C, Gault N, Crechet F, Pfarr C M, Lefaix J L. Coactivation of AP-1 activity and TGF-beta1 gene expression in the stress response of normal skin cells to ionizing radiation. Oncogene 1997; 15: 981–989
  • Masson C, Menaa F, Pinon-Lataillade G, Frobert Y, Radicella J P, Angulo J F. Identification of KIN (KIN17), a human gene encoding a nuclear DNA-binding protein, as a novel component of the TP53-independent response to ionizing radiation. Radiation Research 2001; 156: 535–544
  • Matsui Y, Tsuchida Y, Keng P C. Effects of p53 mutations on cellular sensitivity to ionizing radiation. American Journal of Clinical Oncology 2001; 24: 486–490
  • Matsumoto Y, Suzuki N, Namba N, Umeda N, Ma X J, Morita A, Tomita M, Enomoto A, Serizawa S, Hirano K, Sakaia K, Yasuda H, Hosoi Y. Cleavage and phosphorylation of XRCC4 protein induced by X-irradiation. FEBS Letters 2000; 478: 67–71
  • Matsuoka S, Huang M, Elledge S J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 1998; 282: 1893–1897
  • Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge S J. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proceedings of the National Academy of Sciences USA 2000; 97: 10389–10394
  • Mazumder S, Gong B, Almasan A. Cyclin E induction by genotoxic stress leads to apoptosis of hematopoietic cells. Oncogene 2000; 19: 2828–2835
  • Meek D W. The p53 response to DNA damage. DNA Repair (Amsterdam) 2004; 3: 1049–1056
  • Melchionna R, Chen X B, Blasina A, McGowan C H. Theonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nature Cell Biology 2000; 2: 762–765
  • Menard C, Johann D, Lowenthal M, Muanza T, Sproull M, Ross S, Gulley J, Petricoin E, Coleman C N, Whiteley G, Liotta L, Camphausen K. Discovering clinical biomarkers of ionizing radiation exposure with serum proteomic analysis. Cancer Research 2006; 66: 1844–1850
  • Meng X, Yuan Y, Maestas A, Shen Z. Recovery from DNA damage-induced G2 arrest requires actin-binding protein filamin-A/actin-binding protein 280. Journal of Biological Chemistry 2004; 279: 6098–6105
  • Midgley C A, Owens B, Briscoe C V, Thomas D B, Lane D P, Hall P A. Coupling between gamma irradiation, p53 induction and the apoptotic response depends upon cell type in vivo. Journal of Cell Science 1995; 108: 1843–1848, (Pt 5)
  • Miller A C, Luo L, Chin W K, Director-Myska A E, Prasanna P G, Blakely W F. Proto-oncogene expression: A predictive assay for radiation biodosimetry applications. Radiation Protection Dosimetry 2002; 99: 295–302
  • Miller R W. Delayed effects of external radiation exposure: A brief history. Radiation Research 1995; 144: 160–169
  • Mirzayans R, Scott A, Cameron M, Murray D. Induction of accelerated senescence by gamma radiation in human solid tumor-derived cell lines expressing wild-type TP53. Radiation Research 2005; 163: 53–62
  • Moore D H, 2nd, Tucker J D, Jones I M, Langlois R G, Pleshanov P, Vorobtsova I, Jensen R. A study of the effects of exposure on cleanup workers at the Chernobyl nuclear reactor accident using multiple end points. Radiation Research 1997; 148: 463–475
  • Morgan S E, Kastan M B. Dissociation of radiation-induced phosphorylation of replication protein A from the S-phase checkpoint. Cancer Research 1997; 57: 3386–3389
  • Moulder J E. Report on an interagency workshop on the radiobiology of nuclear terrorism. Molecular and cellular biology dose (1 – 10 Sv) radiation and potential mechanisms of radiation protection. Radiation Research 2002; 158: 118–124, Bethesda, Maryland, USA, 17 – 18 December 2001
  • Muschel R J, Zhang H B, Iliakis G, McKenna W G. Effects of ionizing radiation on cyclin expression in HeLa cells. Radiation Research 1992; 132: 153–157
  • Muschel R J, Zhang H B, McKenna W G. Differential effect of ionizing radiation on the expression of cyclin A and cyclin B in HeLa cells. Cancer Research 1993; 53: 1128–1135
  • Myung K, Braastad C, He D M, Hendrickson E A. KARP-1 is induced by DNA damage in a p53- and ataxia telangiectasia mutated-dependent fashion. Proceedings of the National Academy of Sciences USA 1998; 95: 7664–7669
  • Nagler R, Nagler A, Laufer D. Sialochemical profile of X-irradiated major salivary glands in the rat. International Journal of Radiation Biology 1997; 71: 441–448
  • Nakajima T, Yukawa O. Radiation-induced translocation of protein kinase C though membrane lipid peroxidation in primary cultured rat hepatocytes. International Journal of Radiation Biology 1996; 70: 473–480
  • Nakajima T, Yukawa O, Azuma C, Ohyama H, Wang B, Kojima S, Hayata I, Hama-Inaba H. Involvement of protein kinase C-related anti-apoptosis signaling in radiation-induced apoptosis in murine thymic lymphoma (3SBH5) cells. Radiation Research 2004; 161: 528–534
  • Nakanishi K, Taniguchi T, Ranganathan V, New H V, Moreau L A, Stotsky M, Mathew C G, Kastan M B, Weaver D T, D'Andrea A D. Interaction of FANCD2 and NBS1 in the DNA damage response. Nature Cell Biology 2002; 4: 913–920
  • Niemer-Tucker M M, Sluysmans M M, Bakker B, Davelaar J, Zurcher C, Broerse J J. Long-term consequences of high-dose total-body irradiation on hepatic and renal function in primates. International Journal of Radiation Biology 1995; 68: 83–96
  • Ogawa Y, Saibara T, Terashima M, Ono M, Hamada N, Nishioka A, Inomata T, Onishi S, Yoshida S, Seguchi H. Sequential alteration of proto-oncogene expression in liver, spleen, kidney and brain of mice subjected to whole body irradiation. Oncology 1996; 53: 412–416
  • Orre L M, Stenerlow B, Dhar S, Larsson R, Lewensohn R, Lehtio J. p53 is involved in clearance of ionizing radiation-induced RAD51 foci in a human colon cancer cell line. Biochemical and Biophysical Research Communications 2006; 342: 1211–1217
  • Pandita T K, Lieberman H B, Lim D S, Dhar S, Zheng W, Taya Y, Kastan M B. Ionizing radiation activates the ATM kinase thoughout the cell cycle. Oncogene 2000; 19: 1386–1391
  • Park E C, Yoon J B, Seong J S, Choi K S, Kong E S, Kim Y J, Park Y M, Park E M. Effect of ionizing radiation on rat tissue: Proteomic and biochemical analysis. Preparative Biochemistry and Biotechnology 2006; 36: 19–35
  • Park W Y, Hwang C I, Im C N, Kang M J, Woo J H, Kim J H, Kim Y S, Kim H, Kim K A, Yu H J, Lee S J, Lee Y S, Seo J S. Identification of radiation-specific responses from gene expression profile. Oncogene 2002; 21: 8521–8528
  • Pellmar T C, Rockwell S. Priority list of research areas for radiological nuclear theat countermeasures. Radiation Research 2005; 163: 115–123
  • Peng A, Chen P L. NFBD1/Mdc1 mediates ATR-dependent DNA damage response. Cancer Research 2005; 65: 1158–1163
  • Peterson L E. Factor analysis of cluster-specific gene expression levels from cDNA microarrays. Computer Methods and Programs in Biomedicine 2002; 69: 179–188
  • Peterson L E. Partitioning large-scale microarray-based gene expression profiles using principal component analysis. Computer Methods and Programs in Biomedicine 2003; 70: 107–119
  • Poinsignon C, de Chasseval R, Soubeyrand S, Moshous D, Fischer A, Hache R J, de Villartay J P. Phosphorylation of Artemis following irradiation-induced DNA damage. European Journal of Immunology 2004; 34: 3146–3155
  • Polci R, Peng A, Chen P L, Riley D J, Chen Y. NIMA-related protein kinase 1 is involved early in the ionizing radiation-induced DNA damage response. Cancer Research 2004; 64: 8800–8803
  • Porter L A, Singh G, Lee J M. Abundance of cyclin B1 regulates gamma-radiation-induced apoptosis. Blood 2000; 95: 2645–2650
  • Post S, Weng Y C, Cimprich K, Chen L B, Xu Y, Lee E Y. Phosphorylation of serines 635 and 645 of human Rad17 is cell cycle regulated and is required for G(1)/S checkpoint activation in response to DNA damage. Proceedings of the National Academy of Sciences USA 2001; 98: 13102–13107
  • Prat M, Demarquay C, Frick J, Thierry D, Gorin N C, Bertho J M. Radiation-induced increase in plasma Flt3 ligand concentration in mice: Evidence for the implication of several cell types. Radiation Research 2005; 163: 408–417
  • Prince H E, Hirji K, Waldbeser L S, Plaeger-Marshall S, Kleinman S, Lanier L L. Influence of racial background on the distribution of T-cell subsets and Leu 11-positive lymphocytes in healthy blood donors. Diagnostic Immunology 1985; 3: 33–37
  • Puc J, Keniry M, Li H S, Pandita T K, Choudhury A D, Memeo L, Mansukhani M, Murty V V, Gaciong Z, Meek S E, Piwnica-Worms H, Hibshoosh H, Parsons R. Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell 2005; 7: 193–204
  • Qian L W, Mizumoto K, Inadome N, Nagai E, Sato N, Matsumoto K, Nakamura T, Tanaka M. Radiation stimulates HGF receptor/c-Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells. International Journal of Cancer 2003; 104: 542–549
  • Rappold I, Iwabuchi K, Date T, Chen J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. Journal of Cell Biology 2001; 153: 613–620
  • Reichert T, DeBruyere M, Deneys V, Totterman T, Lydyard P, Yuksel F, Chapel H, Jewell D, Van Hove L, Linden J, et al. Lymphocyte subset reference ranges in adult Caucasians. Clinical Immunology and Immunopathology 1991; 60: 190–208
  • Rogakou E P, Pilch D R, Orr A H, Ivanova V S, Bonner W M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. Journal of Biological Chemistry 1998; 273: 5858–5868
  • Roos-Mattjus P, Hopkins K M, Oestreich A J, Vroman B T, Johnson K L, Naylor S, Lieberman H B, Karnitz L M. Phosphorylation of human Rad9 is required for genotoxin-activated checkpoint signaling. Journal of Biological Chemistry 2003; 278: 24428–24437
  • Ryu J S, Um J H, Kang C D, Bae J H, Kim D U, Lee Y J, Kim D W, Chung B S, Kim S H. Fractionated irradiation leads to restoration of drug sensitivity in MDR cells that correlates with down-regulation of P-gp and DNA-dependent protein kinase activity. Radiation Research 2004; 162: 527–535
  • Saito S, Goodarzi A A, Higashimoto Y, Noda Y, Lees-Miller S P, Appella E, Anderson C W. ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. Journal of Biological Chemistry 2002; 277: 12491–12494
  • Sakaguchi K, Herrera J E, Saito S, Miki T, Bustin M, Vassilev A, Anderson C W, Appella E. DNA damage activates p53 though a phosphorylation-acetylation cascade. Genes and Development 1998; 12: 2831–2841
  • Sanchez Y, Wong C, Thoma R S, Richman R, Wu Z, Piwnica-Worms H, Elledge S J. Conservation of the Chk1 checkpoint pathway in mammals: Linkage of DNA damage to Cdk regulation though Cdc25. Science 1997; 277: 1497–1501
  • Sankaranarayanan K. Ionizing radiation and genetic risks IX. Estimates of the frequencies of mendelian diseases and spontaneous mutation rates in human populations: A 1998 perspective. Mutation Research 1998; 411: 129–178
  • Schmidt-Ullrich R K, Dent P, Grant S, Mikkelsen R B, Valerie K. Signal transduction and cellular radiation responses. Radiation Research 2000; 153: 245–257
  • Schmidt-Ullrich R K, Mikkelsen R B, Dent P, Todd D G, Valerie K, Kavanagh B D, Contessa J N, Rorrer W K, Chen P B. Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 1997; 15: 1191–1197
  • Scully R, Chen J, Ochs R L, Keegan K, Hoekstra M, Feunteun J, Livingston D M. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 1997; 90: 425–435
  • Shan B, Xu J, Zhuo Y, Morris C A, Morris G F. Induction of p53-dependent activation of the human proliferating cell nuclear antigen gene in chomatin by ionizing radiation. Journal of Biological Chemistry 2003; 278: 44009–44017
  • Shieh S Y, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 1997; 91: 325–334
  • Shieh S Y, Taya Y, Prives C. DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO Journal 1999; 18: 1815–1823
  • Shigematsu I, Ito C, Kamada M, Akiyama M, Sasaki H. Effects of A-Bomb radiation on the human body. Hardwood Academic Publishers, TokyoJapan 1995
  • Siliciano J D, Canman C E, Taya Y, Sakaguchi K, Appella E, Kastan M B. DNA damage induces phosphorylation of the amino terminus of p53. Genes and Development 1997; 11: 3471–3481
  • Snyder A R, Morgan W F. Gene expression profiling after irradiation: Clues to understanding acute and persistent responses?. Cancer Metastasis Reviews 2004; 23: 259–268
  • Soltysiak-Pawluczuk D, Bitny-Szlachto S. Effects of ionizing radiation and cysteamine (MEA) on activity of mouse spleen adenyl cyclase. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 1976; 29: 549–553
  • Sorensen C S, Syljuasen R G, Falck J, Schoeder T, Ronnstrand L, Khanna K K, Zhou B B, Bartek J, Lukas J. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 2003; 3: 247–258
  • Sreekumar A, Nyati M K, Varambally S, Barrette T R, Ghosh D, Lawrence T S, Chinnaiyan A M. Profiling of cancer cells using protein microarrays: Discovery of novel radiation-regulated proteins. Cancer Research 2001; 61: 7585–7593
  • St Onge R P, Besley B D, Park M, Casselman R, Davey S. DNA damage-dependent and -independent phosphorylation of the had9 checkpoint protein. Journal of Biological Chemistry 2001; 276: 41898–41905
  • Stewart G S, Wang B, Bignell C R, Taylor A M, Elledge S J. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 2003; 421: 961–966
  • Sturla L M, Amorino G, Alexander M S, Mikkelsen R B, Valerie K, Schmidt-Ullrich R K. Requirement of Tyr-992 and Tyr-1173 in phosphorylation of the epidermal growth factor receptor by ionizing radiation and modulation by SHP2. Journal of Biological Chemistry 2005; 280: 14597–14604
  • Sun Y, Tran B N, Worley L A, Delston R B, Harbour J W. Functional analysis of the p53 pathway in response to ionizing radiation in uveal melanoma. Investigative Ophthalmology and Visual Science 2005; 46: 1561–1564
  • Sunavala-Dossabhoy G N, Fowler M, De Benedetti A. Translation of the radioresistance kinase TLK1B is induced by gamma irradiation though activation of mTOR and phosphorylation of 4E-BP1. BMC Molecular Biology 2004; 5: 1
  • Suzuki K, Kodama S, Watanabe M. Extremely low-dose ionizing radiation causes activation of mitogen-activated protein kinase pathway and enhances proliferation of normal human diploid cells. Cancer Research 2001a; 61: 5396–5401
  • Suzuki K, Mori I, Nakayama Y, Miyakoda M, Kodama S, Watanabe M. Radiation-induced senescence-like growth arrest requires TP53 function but not telomere shortening. Radiation Research 2001b; 155: 248–253
  • Szkanderova S, Vavrova J, Hernychova L, Neubauerova V, Lenco J, Stulik J. Proteome alterations in gamma-irradiated human T-lymphocyte leukemia cells. Radiation Research 2005; 163: 307–315
  • Takagi K, Yamaguchi K, Sakurai T, Asari T, Hashimoto K, Terakawa S. Secretion of saliva in X-irradiated rat submandibular glands. Radiation Research 2003; 159: 351–360
  • Taneja N, Davis M, Choy J S, Beckett M A, Singh R, Kron S J, Weichselbaum R R. Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. Journal of Biological Chemistry 2004; 279: 2273–2280
  • Taniguchi T, Garcia-Higuera I, Xu B, Andreassen P R, Gregory R C, Kim S T, Lane W S, Kastan M B, D'Andrea A D. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 2002; 109: 459–472
  • Tapio S, Danescu-Mayer J, Asmuss M, Posch A, Gomolka M, Hornhardt S. Combined effects of gamma radiation and arsenite on the proteome of human TK6 lymphoblastoid cells. Mutation Research 2005; 581: 141–152
  • Thompson L H, Schild D. Homologous recombinational repair of DNA ensures mammalian chomosome stability. Mutation Research 2001; 477: 131–153
  • Tibbetts R S, Cortez D, Brumbaugh K M, Scully R, Livingston D, Elledge S J, Abraham R T. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes and Development 2000; 14: 2989–3002
  • Todd D G, Mikkelsen R B, Rorrer W K, Valerie K, Schmidt-Ullrich R K. Ionizing radiation stimulates existing signal transduction pathways involving the activation of epidermal growth factor receptor and ERBB-3, and changes of intracellular calcium in A431 human squamous carcinoma cells. Journal of Receptor and Signal Transduction Research 1999; 19: 885–908
  • Tollerud D J, Clark J W, Brown L M, Neuland C Y, Pankiw-Trost L K, Blattner W A, Hoover R N. The influence of age, race, and gender on peripheral blood mononuclear-cell subsets in healthy nonsmokers. Journal of Clinical Immunology 1989; 9: 214–222
  • Tomasik A, Tarnawski R, Wierzynski J. Measurements of amylase isoenzymes in sera and saliva of patients after radiotherapy because of larynx carcinoma. Otolaryngologia Polska 1994; 48: 132–137
  • Townsend P A, Cragg M S, Davidson S M, McCormick J, Barry S, Lawrence K M, Knight R A, Hubank M, Chen P L, Latchman D S, Stephanou A. STAT-1 facilitates the ATM activated checkpoint pathway following DNA damage. Journal of Cell Science 2005; 118: 1629–1639
  • Tusher V G, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences USA 2001; 17: 17
  • United Nations Scientific Committee on the Effects Of Atomic Radiation (UNSCEAR). Sources and effects of Ionizing radiation, report to the general assembly, with scientific annexes, adaptive responses to radiation of cells and organisms. United Nations, New York 1994; 187–272
  • Volkmer E, Karnitz L M. Human homologs of Schizosaccharomyces pombe rad1, hus1, and rad9 form a DNA damage-responsive protein complex. Journal of Biological Chemistry 1999; 274: 567–570
  • Walton M I, Wilson S C, Hardcastle I R, Mirza A R, Workman P. An evaluation of the ability of pifithin-alpha and -beta to inhibit p53 function in two wild-type p53 human tumor cell lines. Molecular Cancer Therapeutics 2005; 4: 1369–1377
  • Wang B, Matsuoka S, Carpenter P B, Elledge S J. 53BP1, a mediator of the DNA damage checkpoint. Science 2002; 298: 1435–1438
  • Wang H, Guan J, Wang H, Perrault A R, Wang Y, Iliakis G. Replication protein A2 phosphorylation after DNA damage by the coordinated action of ataxia telangiectasia-mutated and DNA-dependent protein kinase. Cancer Research 2001a; 61: 8554–8563
  • Wang J, Pluth J M, Cooper P K, Cowan M J, Chen D J, Yannone S M. Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression. DNA Repair (Amsterdam) 2005; 4: 556–570
  • Wang J L, Sun Y, Wu S. Gamma-irradiation induces matrix metalloproteinase II expression in a p53-dependent manner. Molecular Carcinogenesis 2000; 27: 252–258
  • Wang X, Khadpe J, Hu B, Iliakis G, Wang Y. An overactivated ATR/CHK1 pathway is responsible for the prolonged G2 accumulation in irradiated AT cells. Journal of Biological Chemistry 2003; 278: 30869–30874
  • Wang X, Matsumoto H, Takahashi A, Nakano T, Okaichi K, Ihara M, Ohnishi T. p53 accumulation in the organs of low-dose X-ray-irradiated mice. Cancer Letters 1996; 104: 79–84
  • Wang X, Wang L, Callister M D, Putnam J B, Mao L, Li L. Human Rad17 is phosphorylated upon DNA damage and also overexpressed in primary non-small cell lung cancer tissues. Cancer Research 2001b; 61: 7417–7421
  • Ward I M, Minn K, Jorda K G, Chen J. Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. Journal of Biological Chemistry 2003a; 278: 19579–19582
  • Ward I M, Minn K, van Deursen J, Chen J. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Molecular Cell Biology 2003b; 23: 2556–2563
  • Ward I M, Wu X, Chen J. Theonine 68 of Chk2 is phosphorylated at sites of DNA strand breaks. Journal of Biological Chemistry 2001; 276: 47755–47758
  • Waterman M J, Stavridi E S, Waterman J L, Halazonetis T D. ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nature Genetics 1998; 19: 175–178
  • Weizman N, Shiloh Y, Barzilai A. Contribution of the Atm protein to maintaining cellular homeostasis evidenced by continuous activation of the AP-1 pathway in Atm-deficient brains. Journal of Biological Chemistry 2003; 278: 6741–6747
  • Wendt J, von Haefen C, Hemmati P, Belka C, Dorken B, Daniel P T. TRAIL sensitizes for ionizing irradiation-induced apoptosis though an entirely Bax-dependent mitochondrial cell death pathway. Oncogene 2005; 24: 4052–4064
  • Werner T. Cluster analysis and promoter modelling as bioinformatics tools for the identification of target genes from expression array data. Pharmacogenomics 2001; 2: 25–36
  • Wiener D, Shah S, Malone J, Lowell N, Lowitt S, Rowlands D T, Jr. Multiparametric analysis of peripheral blood in the normal pediatric population by flow cytometry. Journal of Clinical Laboratory Analysis 1990; 4: 175–179
  • Williams B R, Mirzoeva O K, Morgan W F, Lin J, Dunnick W, Petrini J H. A murine model of Nijmegen breakage syndrome. Current Biology 2002; 12: 648–653
  • Wilson D S, Nock S. Functional protein microarrays. Current Opinion in Chemical Biology 2002; 6: 81–85
  • Wilson J W, Pritchard D M, Hickman J A, Potten C S. Radiation-induced p53 and p21WAF-1/CIP1 expression in the murine intestinal epithelium: Apoptosis and cell cycle arrest. American Journal of Pathology 1998; 153: 899–909
  • Woloschak G E, Paunesku T. Mechanisms of radiation-induced gene response. Stem Cells 1997; 15: 15–25
  • Wu X, Ranganathan V, Weisman D S, Heine W F, Ciccone D N, O'Neill T B, Crick K E, Pierce K A, Lane W S, Rathbun G, Livingston D M, Weaver D T. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 2000; 405: 477–482
  • Xu X, Stern D F. NFBD1/KIAA0170 is a chomatin-associated protein involved in DNA damage signaling pathways. Journal of Biological Chemistry 2003; 278: 8795–8803
  • Xu X, Stern D F. Establishment of a cell-free system to study the activation of Chk2. Methods in Molecular Biology 2004; 280: 165–174
  • Xu Z X, Timanova-Atanasova A, Zhao R X, Chang K S. PML colocalizes with and stabilizes the DNA damage response protein TopBP1. Molecular Cell Biology 2003; 23: 4247–4256
  • Yamane K, Wu X, Chen J. A DNA damage-regulated BRCT-containing protein, TopBP1, is required for cell survival. Molecular Cell Biology 2002; 22: 555–566
  • Yan J, Khanna K K, Lavin M F. Induction of inositol 1,4,5 trisphosphate receptor genes by ionizing radiation. International Journal of Radiation Biology 1996; 69: 539–546
  • Yang C R, Leskov K, Hosley-Eberlein K, Criswell T, Pink J J, Kinsella T J, Boothman D A. Nuclear clusterin/XIP8, an X-ray-induced Ku70-binding protein that signals cell death. Proceedings of the National Academy of Sciences USA 2000; 97: 5907–5912
  • Yazdi P T, Wang Y, Zhao S, Patel N, Lee E Y, Qin J. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes and Development 2002; 16: 571–582
  • Yin E, Nelson D O, Coleman M A, Peterson L E, Wyrobek A J. Gene expression changes in mouse brain after exposure to low-dose ionizing radiation. International Journal of Radiation Biology 2003; 79: 759–775
  • Zhang B, Su Y P, Ai G P, Liu X H, Wang F C, Cheng T M. Differentially expressed proteins of gamma-ray irradiated mouse intestinal epithelial cells by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. World Journal of Gastroenterology 2003; 9: 2726–2731
  • Zhang J, Ma Z, Treszezamsky A, Powell S N. MDC1 interacts with Rad51 and facilitates homologous recombination. Nature Structural Molecular Biology 2005; 12: 902–909
  • Zhang X, Succi J, Feng Z, Prithivirajsingh S, Story M D, Legerski R J. Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Molecular Cell Biology 2004; 24: 9207–9220
  • Zhao H, Watkins J L, Piwnica-Worms H. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proceedings of the National Academy of Sciences USA 2002; 99: 14795–14800
  • Zhao S, Weng Y C, Yuan S S, Lin Y T, Hsu H C, Lin S C, Gerbino E, Song M H, Zdzienicka M Z, Gatti R A, Shay J W, Ziv Y, Shiloh Y, Lee E Y. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 2000; 405: 473–477
  • Zhou B B, Chaturvedi P, Spring K, Scott S P, Johanson R A, Misha R, Mattern M R, Winkler J D, Khanna K K. Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. Journal of Biological Chemistry 2000; 275: 10342–10348
  • Zhou X Y, Wang X, Hu B, Guan J, Iliakis G, Wang Y. An ATM-independent S-phase checkpoint response involves CHK1 pathway. Cancer Research 2002; 62: 1598–1603

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.