581
Views
40
CrossRef citations to date
0
Altmetric
Reviews

Ionizing radiation sensitivity of the ocular lens and its dose rate dependence

Pages 1024-1034 | Received 27 Sep 2016, Accepted 24 Nov 2016, Published online: 22 Dec 2016

References

  • Abelson PH, Kruger PG. 1949. Cyclotron-induced radiation cataracts. Science. 110:655–657.
  • Ainsbury EA, Barnard S, Bright S, Dalke C, Jarrin M, Kunze S, Tanner R, Dynlacht JR, Quinlan RA, Graw J, et al. 2016. Ionizing radiation induced cataracts: recent biological and mechanistic developments and perspectives for future research. Mutat Res. 770:238–261
  • Ainsworth EJ, Jose J, Yang VV, Barker ME. 1981. Cataract production in mice by heavy charged particles. Report number LBL-12654. Lawrence Berkeley Laboratory, University of California. Available from: http://escholarship.org/uc/item/6hg7x1cg.
  • Alter AJ, Leinfelder PJ. 1953. Roentgen-ray cataract; effects of shielding of the lens and ciliary body. AMA Arch Ophthalmol. 49:257–260.
  • Andreeff M, Claussnitzer J, Oehme L, Freudenberg R, Kotzerke J. 2012. Bestimmung der Augenlinsenexposition bei Patienten nach einer Radioiodtherapie [Measurement of ocular lens ionizing radiation exposure after radioiodine therapy]. Nuklearmedizin. 51:79–83 [in German with English abstract]
  • Aufderheide E, Rink H, Hieber L, Kraft G. 1987. Heavy ion effects on cellular DNA: strand break induction and repair in cultured diploid lens epithelial cells. Int J Radiat Biol Relat Stud Phys Chem Med. 51:779–790.
  • Azizova TV, Bragin EV, Hamada N, Bannikova MV. 2016. Risk of cataract incidence in a cohort of Mayak PA workers following chronic occupational radiation exposure. PLoS One. 11:e0164357.
  • Babizhayev MA, Vishnyakova KS, Yegorov YE. 2011. Telomere-dependent senescent phenotype of lens epithelial cells as a biological marker of aging and cataractogenesis: the role of oxidative stress intensity and specific mechanism of phospholipid hydroperoxide toxicity in lens and aqueous. Fundam Clin Pharmacol. 25:139–162.
  • Babizhayev MA, Yegorov YE. 2016. Telomere attrition in human lens epithelial cells associated with oxidative stress provide a new therapeutic target for the treatment, dissolving and prevention of cataract with N-acetylcarnosine lubricant eye drops. Kinetic, pharmacological and activity-dependent separation of therapeutic targeting: transcorneal penetration and delivery of L-Carnosine in the aqueous humor and hormone-like hypothalamic antiaging effects of the instilled ophthalmic drug through a safe eye medication technique. Recent Pat Drug Deliv Formul. 10:82–129.
  • Bannik K, Rössler U, Faus-Kessler T, Gomolka M, Hornhardt S, Dalke C, Klymenko O, Rosemann M, Trott KR, Atkinson M, et al. 2013. Are mouse lens epithelial cells more sensitive to γ-irradiation than lymphocytes? Radiat Environ Biophys. 52:279–286.
  • Bateman JL, Bond VP, Rossi HH. 1964. Lens opacification in mice exposed to monoenergetic neutrons (in the Proceedings of the Symposium on Biological Effects of Neutron and Proton Irradiations held in Upton, NY, USA on 7–11 October 1964). IAEA. 2:321–336.
  • Bateman JL, Rossi HH, Kellerer AM, Robinson CV, Bond VP. 1972. Dose-dependence of fast neutron RBE for lens opacification in mice. Radiat Res. 51:381–390.
  • Baumstark-Khan C, Heilmann J, Rink H. 2003. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation. Adv Space Res. 31:1583–1591.
  • Blakely EA, Kleiman NJ, Neriishi K, Chodick G, Chylack LT, Cucinotta FA, Minamoto A, Nakashima E, Kumagami T, Kitaoka T, et al. 2010. Radiation cataractogenesis: epidemiology and biology. Radiat Res. 173:709–717.
  • Brenner DJ, Hall EJ. 1990. The inverse dose-rate effect for oncogenic transformation by neutrons and charged particles: a plausible interpretation consistent with published data. Int J Radiat Biol. 58:745–758.
  • Brenner DJ, Medvedovsky C, Huang Y, Merriam GR Jr, Worgul BV. 1991. Accelerated heavy particles and the lens. VI. RBE studies at low doses. Radiat Res. 128:73–81.
  • Brenner DJ, Medvedovsky C, Huang Y, Worgul BV. 1993. Accelerated heavy particles and the lens. VIII. Comparisons between the effects of acute low doses of iron ions (190 keV/μm) and argon ions (88 keV/μm). Radiat Res. 133:198–203.
  • Cervelli T, Panetta D, Navarra T, Andreassi MG, Basta G, Galli A, Salvadori PA, Picano E, Del Turco S. 2014. Effects of single and fractionated low-dose irradiation on vascular endothelial cells. Atherosclerosis. 235:510–518.
  • Chalupeecky H. 1897. Uber die wirkung der röntgenstrahlen auf das Auge und die haut. Zentralbl Augenheilkd. 21:234–271.
  • Cleary SF, Geeraets WJ, Williams RC, Mueller HA, Ham WT Jr. 1973. Lens changes in the rabbit from fractionated X-ray and proton irradiations. Health Phys. 24:269–276.
  • Cogan DG, Martin SF, Kimura SJ. 1949. Atom bomb cataracts. Science. 110:654–655.
  • Cox AB, Ainsworth EJ, Jose JG, Lee AC, Lett JT. 1983. Cataractogenesis from high-LET radiation and the Casarett model. Adv Space Res. 3:211–219.
  • Dauer LT, Ainsbury EA, Dynlacht J, Hoel D, Klein BE, Mayer D, Prescott CR, Thornton RH, Vano E, Woloschak GE, et al. 2016. Status of NCRP scientific committee 1-23 commentary on guidance on radiation dose limits for the lens of the eye. Health Phys. 110:182–184.
  • Dauer LT, Ainsbury EA, Dynlacht J, Hoel D, Klein BE, Mayer D, Prescott CR, Thornton RH, Vano E, Woloschak GE, et al. 2017. Guidance on radiation dose limits for the lens of the eye: overview of the recommendations in NCRP Commentary No. 26. Int J Radiat Biol. 93:[in this issue].
  • De Stefano I, Tanno B, Giardullo P, Leonardi S, Pasquali E, Antonelli F, Tanori M, Casciati A, Pazzaglia S, Saran A, et al. 2015. The Patched 1 tumor-suppressor gene protects the mouse lens from spontaneous and radiation-induced cataract. Am J Pathol. 185:85–95.
  • De Stefano I, Giardullo P, Tanno B, Leonardi S, Pasquali E, Babini G, Saran A, Mancuso M. 2016. Nonlinear radiation-induced cataract using the radiosensitive Ptch1(+/-) Mouse Model. Radiat Res. 186:315–321.
  • Di Paola M, Bianchi M, J. Baarli J. 1978. Lens opacification in mice exposed to 14-MeV neutrons. Radiat Res. 73:340–350.
  • Di Paola M, Coppola M, Baarli T, Bianchi M, Sullivan AH. 1980. Biological responses to various neutron energies from 1 to 600 MeV. A II. Lens opacification in mice. Radiat Res. 84:453–461.
  • Evans TC, Richards RD, Riley EF. 1960. Histologic studies of neutron- and x-irradiated mouse lenses. Radiat Res. 13:737–750.
  • Fedorenko BS, Abrosimova AN, Smirnova OA. 1995. The effect of high-energy accelerated particles on the crystalline lens of laboratory animals. Phys Part Nucl. 26:573–588.
  • Foray N, Bourguignon M, Hamada N. 2016. Individual response to ionizing radiation. Mutat Res. 770:369–386.
  • Fujii N, Hiroki K, Matsumoto S, Masuda K, Inoue M, Tanaka Y, Awakura M, Akaboshi M. 2001. Correlation between the loss of the chaperone-like activity and the oxidation, isomerization and racemization of gamma-irradiated alpha-crystallin. Photochem Photobiol. 74:477–482.
  • Fujii N, Nakamura T, Sadakane Y, Saito T, Fujii N. 2007. Differential susceptibility of αA- and αB-crystallin to γ-ray irradiation. Biochim Biophys Acta. 1774:345–350.
  • Fujii N, Hisano T, Fujii N. 2008. Study of subunit interactions of αA- and αB-crystallins and the effects of γ-irradiation on their interactions by surface plasmon resonance. Biochim Biophys Acta. 1784:1507–1513.
  • Fujimichi Y, Hamada N. 2014. Ionizing irradiation not only inactivates clonogenic potential in primary normal human diploid lens epithelial cells but also stimulates cell proliferation in a subset of this population. PLoS One. 9:e98154.
  • Goldmann H, Liechti A. 1938. Experimentelle untersuchungen über die genese des röntgenstars. Graefes Arhiv für Ophthalmologie. 138:722–736.
  • Graul EH, Kruger H, Ruther W, Piroth D. 1969. RBE values for fast neutrons in connection with estimates of the radiation burden in space. Life Sci Space Res. 7:186–194.
  • Graw J. 2009. Mouse models of cataract. J Genet. 88:469–486.
  • Hall EJ, Worgul BV, Smilenov L, Elliston CD, Brenner DJ. 2006. The relative biological effectiveness of densely ionizing heavy-ion radiation for inducing ocular cataracts in wild type versus mice heterozygous for the ATM gene. Radiat Environ Biophys. 45:99–104.
  • Hall EJ, Giassia AJ. 2011. Radiobiology for the Radiologist, Seventh Edition. Philadelphia: Lippincottt Williams & Wilkins.
  • Hamada N, Matsumoto H, Hara T, Kobayashi Y. 2007. Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects. J Radiat Res. 48:87–95.
  • Hamada N. 2009. Recent insights into the biological action of heavy-ion radiation. J Radiat Res. 50:1–9.
  • Hamada N, Imaoka T, Masunaga S, Ogata T, Okayasu R, Takahashi A, Kato TA, Kobayashi Y, Ohnishi T, Ono K, et al. 2010. Recent advances in the biology of heavy-ion cancer therapy. J Radiat Res. 51:365–383.
  • Hamada N, Maeda M, Otsuka K, Tomita M. 2011. Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects. Curr Mol Pharmacol. 4:79–95.
  • Hamada N. 2014. What are the intracellular targets and intratissue target cells for radiation effects? Radiat Res. 181:9–20.
  • Hamada N, Fujimichi Y. 2014. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects. J Radiat Res. 55:629–640.
  • Hamada N, Fujimichi Y, Iwasaki T, Fujii N, Furuhashi M, Kubo E, Minamino T, Nomura T, Sato H. 2014. Emerging issues in radiogenic cataracts and cardiovascular disease. J Radiat Res. 55:831–846.
  • Hamada N, Fujimichi Y. 2015. Role of carcinogenesis related mechanisms in cataractogenesis and its implications for ionizing radiation cataractogenesis. Cancer Lett. 368:262–274.
  • Hamada N, Sato T. 2016. Cataractogenesis following high-LET radiation exposure. Mutat Res. 770:262–291.
  • Harrison JD, Balonov M, Martin CJ, Ortiz Lopez P, Menzel HG, Simmonds JR, Smith-Bindman R, Wakeford R. 2016. Use of effective dose. Ann ICRP. 45:215–224.
  • Hayden JH, Rothstein H, Worgul BV, Merriam GR Jr. 1980. Hypophysectomy exerts a radioprotective effect on frog lens. Experientia. 36:116–118.
  • International Commission on Radiological Protection (ICRP). 1951. International recommendations on radiological protection. BJR. 24:46–53. Radiology. 56:431–439. (n.b., the same contents were published in two different journals).
  • ICRP. 1955. Recommendations of the International Commission on Radiological Protection. Br J Radiol. 28:1–92.
  • ICRP 1964. Recommendations of the International Commission on Radiological Protection. ICRP Publication 6. Oxford: Pergamon Press.
  • ICRP 1969. Radiosensitivity and spatial distribution of dose. ICRP Publication 14. Oxford: Pergamon Press.
  • ICRP. 1977. Recommendations of the International Commission on Radiological Protection. ICRP Publication 26. Ann ICRP 1(3). Available from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%2026.
  • ICRP. 1980. Statement and recommendations of the International Commission on Radiological Protection from its 1980 meeting. BJR. 53:816–818.
  • ICRP. 1984. Nonstochastic effects of ionizing radiation. ICRP Publication 41. Ann ICRP. 14(3). Available from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%2041.
  • ICRP. 1990. RBE for deterministic effects. ICRP Publication 58. Ann ICRP. 20(4). Available from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%2058.
  • ICRP. 1991. 1990 recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann ICRP. 21(1-3). Available from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%2060.
  • ICRP. 2003. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (wR). ICRP Publication 92. Ann ICRP. 33(4). Available from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%2092.
  • ICRP. 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 37(2-4). Available from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%20103.
  • ICRP. 2012. ICRP Statement on tissue reactions/Early and late effects of radiation in normal tissues and organs – threshold doses for tissue reactions in a radiation protection context. ICRP Publication 118. Ann ICRP. 41(1/2). Available from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%20118.
  • ICRP. 2015. Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances. ICRP Publication 128. Ann ICRP. 44(2S). Available from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%20128.
  • Japan Aerospace Exploration Agency (JAXA). 2013. Committee report on discussion for implementation of ICRP 2007 Recommendations. Available from: http://iss.jaxa.jp/med/research/radiation/pdf/report_a.pdf [in Japanese].
  • Keng PC, Lee AC, Cox AB, Bergtold DS, Lett JT. 1982. Effects of heavy ions on rabbit tissues: cataractogenesis. Int J Radiat Biol. 41:127–137.
  • Kim I, Saito T, Fujii N, Kanamoto T, Chatake T, Fujii N. 2015. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation. Biochem Biophys Res Commun. 466:622–628.
  • Kleiman NJ, David J, Elliston CD, Hopkins KM, Smilenov LB, Brenner DJ, Worgul BV, Hall EJ, Lieberman HB. 2007. Mrad9 and atm haploinsufficiency enhance spontaneous and X-ray-induced cataractogenesis in mice. Radiat Res. 168:567–573.
  • Kleiman NJ, Smilenov L, Brenner DJ, Hall EJ. 2011a. Low-dose radiation cataract and genetic determinants of radiosensitivity. The Proceedings of DOE Low Dose Investigators’ Workshop VII, 9–11 May 2011, DOE Office of Biological and Environmental Research, Washington, DC.
  • Kleiman NJ, Smilenov L, Lieberman H, Brenner DJ, Hall EJ. 2011b. Mechanisms of ocular cataracts. The Proceedings of the 22nd NASA Space Radiation Investigators’ Workshop, 18–22 September 2011, NASA Johnson Space Center, Universities Space Research Association, Division of Space Life Sciences, League City, TX. Available from: http://www.dsls.usra.edu/meetings/radiation2011/pdf/7118.pdf.
  • Leinfelder PJ, Riley EF. 1956. Further studies of effects of x-radiation on partially shielded lens of rabbit. AMA Arch Ophthalmol. 55:84–86.
  • Leonard BE, Lucas AC. 2009. LDR brachytherapy: can low dose rate hypersensitivity from the inverse dose rate effect cause excessive cell killing to peripherial connective tissues and organs? Br J Radiol. 82:131–139.
  • Lin CM, Yeh PT, Doyle P, Tsan YT, Chen PC. Health Data Analysis in Taiwan (hDATa) Research Group. 2016. Association between 131I treatment for thyroid cancer and risk of receiving cataract surgery: a cohort study from Taiwan. J Nucl Med. 57:836–841.
  • Little MP, Zablotska LB, Brenner AV, Lipshultz SE. 2016. Circulatory disease mortality in the Massachusetts tuberculosis fluoroscopy cohort study. Eur J Epidemiol. 31:287–309.
  • Little MP. 2016. Radiation and circulatory disease. Mutat Res. 770:299–318.
  • Makley LN, McMenimen KA, DeVree BT, Goldman JW, McGlasson BN, Rajagopal P, Dunyak BM, McQuade TJ, Thompson AD, Sunahara R, et al. 2015. Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. Science. 350:674–677.
  • Markiewicz E, Barnard S, Haines J, Coster M, van Geel O, Wu W, Richards S, Ainsbury E, Rothkamm K, Bouffler S, et al. 2015. Nonlinear ionizing radiation-induced changes in eye lens cell proliferation, cyclin D1 expression and lens shape. Open Biol. 5:150011.
  • Mattsson S, Soderberg M. 2011. Radiation dose management in CT, SPECT/CT and PET/CT techniques. Radiat Prot Dosimetry. 147:13–21.
  • Medvedovsky C, Worgul BV, Huang Y, Brenner DJ, Tao F, Miller J, Zeitlin C, Ainsworth EJ. 1994. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions. Adv Space Res. 14:475–482.
  • Merriam GR, Jr., Focht EF. 1957. A clinical study of radiation cataracts and the relationship to dose. Am J Roentgenol Radium Ther Nucl Med. 77:759–785.
  • Merriam GR Jr, Focht EF. 1962. A clinical and experimental study of the effect of single and divided doses of radiation on cataract production. Trans Am Ophthalmol Soc. 60:35–52.
  • Merriam GR Jr, Worgul BV, Medvedovsky C, Zaider M, Rossi HH. 1984. Accelerated heavy particles and the lens. I. Cataractogenic potential. Radiat Res. 98:129–140.
  • Nakashima E, Neriishi K, Minamoto A. 2006. A reanalysis of atomic-bomb cataract data, 2000–2002: a threshold analysis. Health Phys. 90:154–160.
  • US National Aeronautics and Space Administration (NASA). 2015. NASA space flight human system standard. Volume 1, Revision A: Crew health. NASA-STD-3001. NASA, Washington, DC. https://standards.nasa.gov/standard/nasa/nasa-std-3001-vol-1 (accessed 17 November 2016).
  • US National Council on Radiation Protection and Measurements (NCRP) 1989. Limit for exposure to ‘hot particles’ on the skin. NCRP Report No. 106.
  • NCRP. 1993. Limitation of exposure to ionizing radiation. NCRP Report No. 116.
  • NCRP. 1999. Biological effects and exposure limits for ‘hot particles’. NCRP Report No. 130.
  • NCRP. 2000. Radiation protection guidance for activities in low-earth orbit. NCRP Report No. 132.
  • NCRP. 2016. Guidance on radiation dose limits for the lens of the eye. NCRP Commentary No. 26.
  • Neriishi K, Nakashima E, Minamoto A, Fujiwara S, Akahoshi M, Mishima HK, Kitaoka T, Shore RE. 2007. Postoperative cataract cases among atomic bomb survivors: radiation dose response and threshold. Radiat Res. 168:404–408.
  • Neriishi K, Hayashi T, Nakashima E, Imai K, Nakachi K. 2009. ATM haplotypes and radiosensitivity in A-bomb survivors: preliminary trial using existing data at RERF, Abstract Book of Radiation Cataractogenesis Workshop 2009, RERF, Hiroshima, Japan.
  • Niwa O. 2010. Roles of stem cells in tissue turnover and radiation carcinogenesis. Radiat Res. 174:833–839.
  • Otake M, Neriishi K, Schull WJ. 1996. Cataract in atomic bomb survivors based on a threshold model and the occurrence of severe epilation. Radiat Res. 146:339–348.
  • Otsuka K, Hamada N, Magae J, Matsumoto H, Hoshi Y, Iwasaki T. 2013. Ionizing radiation leads to the replacement and de novo production of colonic Lgr5(+) stem cells. Radiat Res. 179:637–646.
  • Pirie A, Flanders PH. 1957. Effect of X-rays on partially shielded lens of the rabbit. AMA Arch Ophthalmol. 57:849–854.
  • Reste J, Zvigule G, Zvagule T, Kurjane N, Eglite M, Gabruseva N, Berzina D, Plonis J, Miklasevics E. 2014. Telomere length in Chernobyl accident recovery workers in the late period after the disaster. J Radiat Res. 55:1089–1100.
  • Rollins W. 1903. Notes on x-light. The effect of x-light on the crystalline lens. Boston Med Surg J. 148:364–365.
  • Rothstein H, Worgul BV, Medvedovsky C, Merriam GR. Jr. 1982. G0/G1 arrest of cell proliferation in the ocular lens prevents development of radiation cataract. Ophthalmic Res. 14:215–220.
  • Seol MA, Jung U, Eom HS, Kim SH, Park HR, Jo SK. 2012. Prolonged expression of senescence markers in mice exposed to gamma-irradiation. J Vet Sci. 13:331–338.
  • Shore RE. 2016. Radiation and cataract risk: impact of recent epidemiologic studies on ICRP judgments. Mutat Res 770:231–237.
  • Tao F, Powers-Risius P, Alpen EL, Medvedovsky C, David J, Worgul BV. 1994. Radiation effects on late cytopathological parameters in the murine lens relative to particle fluence. Adv Space Res. 14:483–491.
  • Tsuruoka C, Suzuki M, Kanai T, Fujitaka K. 2005. LET and ion species dependence for cell killing in normal human skin fibroblasts. Radiat Res. 163:494–500.
  • Tsuruoka C, Suzuki M, Hande MP, Furusawa Y, Anzai K, Okayasu R. 2008. The difference in LET and ion species dependence for induction of initially measured and non-rejoined chromatin breaks in normal human fibroblasts. Radiat Res. 170:163–171.
  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). 2008. Sources and effects of ionizing radiation. UNSCEAR 2008 Report to the General Assembly with Scientific Annexes. Volume I. Annex B, Exposures of the public and workers from various sources of radiation. Vienna, Austria: UNSCEAR. Available from: http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_Annex_B.pdf.
  • Upton AC, Christenberry KW, Meville GS, Furth J, Hurst GS. 1956. The relative biological effectiveness of neutrons, x-rays, and gamma rays for the production of lens opacities: observations on mice, rats, guinea-pigs, and rabbits. Radiology. 67:686–696.
  • von Sallmann L. 1950. Experimental studies on early lens changes after X-ray irradiation. Trans Am Ophthalmol Soc. 48:228–242.
  • von Sallmann L, Tobias CA, Anger HO, Welch C, Kimura SF, Munoz CM, Drungis A. 1955. Effects of high-energy particles, X-rays, and aging on lens epithelium. AMA Arch Ophthalmol. 54:489–514.
  • Wiley LA, Rajagopal R, Dattilo LK, Beebe DC. 2011. The tumor suppressor gene Trp53 protects the mouse lens against posterior subcapsular cataracts and the BMP receptor Acvr1 acts as a tumor suppressor in the lens. Dis Model Mech. 4:484–495.
  • Winchell HS, Horst WD, Braun L, Oldendorf WH, Hattner R, Parker H. 1980. N-isopropyl-[123I] p-iodoamphetamine: single-pass brain uptake and washout; binding to brain synaptosomes; and localization in dog and monkey brain. J Nucl Med. 21:947–952.
  • Worgul BV, Rothstein H. 1975. Radiation cataract and mitosis. Ophthalmic Res. 7:21–32.
  • Worgul BV, Merriam GR Jr, Medvedovsky C. 1986. Accelerated heavy particles and the lens II. Cytopathological changes. Invest Ophthalmol Vis Sci. 27:108–114.
  • Worgul BV, Merriam GR Jr, Medvedovsky C, Brenner DJ. 1989a. Accelerated heavy particles and the lens. III. Cataract enhancement by dose fractionation. Radiat Res. 118:93–100.
  • Worgul BV, Medvedovsky C, Powers-Risius P, Alpen E. 1989b. Accelerated heavy ions and the lens. IV. Biomicroscopic and cytopathological analyses of the lenses of mice irradiated with 600 MeV/amu 56Fe ions. Radiat Res. 120:280–293.
  • Worgul BV, Brenner DJ, Medvedovsky C, Merriam GR Jr, Huang Y. 1993. Accelerated heavy particles and the lens. VII: The cataractogenic potential of 450 MeV/amu iron ions. Invest Ophthalmol Vis Sci. 34:184–193.
  • Worgul BV, Medvedovsky C, Huang Y, Marino SA, Randers-Pehrson G, Brenner DJ. 1996. Quantitative assessment of the cataractogenic potential of very low doses of neutrons. Radiat Res. 145:343–349.
  • Worgul BV, Smilenov L, Brenner DJ, Junk A, Zhou W, Hall EJ. 2002. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts. Proc Natl Acad Sci USA. 99:9836–9839.
  • Worgul BV, Kundiyev YI, Sergiyenko NM, Chumak W, Vitte PM, Medvedovsky C, Bakhanova EV, Junk AK, Kyrychenko OY, Musijachenko NV, et al. 2007. Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiat Res. 167:233–243.
  • Yan W, Akiba S, Sun Q. 2015. Surveys of lens opacities of residents living in high back ground radiation area in Yangjiang, Guangdong province. Chin J Radiol Med Prot. 35:130–132 [in Chinese with English abstract].
  • Zablotska LB, Little MP, Cornett RJ. 2014. Potential increased risk of ischemic heart disease mortality with significant dose fractionation in the Canadian Fluoroscopy Cohort Study. Am J Epidemiol. 179:120–131.
  • Zeiss CJ, Johnson EM, Dubielzig RR. 2003. Feline intraocular tumors may arise from transformation of lens epithelium. Vet Pathol. 40:355–362.
  • Zhao L, Chen XJ, Zhu J, Xi YB, Yang X, Hu LD, Ouyang H, Patel SH, Jin X, Lin D, et al. 2015. Lanosterol reverses protein aggregation in cataracts. Nature. 523:607–611. (Erratum in: 2015. Nature. 526:595).
  • Zhu W, Zhang Q, Niu H, Zhang S, Sun Q. 2015. Applied research on organ doses induced by small doses ionizing radiation estimation. Chin Med Equip. 12:20–24 [in Chinese with English abstract].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.