713
Views
78
CrossRef citations to date
0
Altmetric
Reviews

Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules

, &
Pages 1151-1176 | Received 27 Oct 2016, Accepted 01 Dec 2016, Published online: 12 Jan 2017

References

  • Amundson SA, Fornace AJ. 2003. Monitoring human radiation exposure by gene expression profiling: possibilities and pitfalls. Health Phys. 85:36–42.
  • Brengues M, Paap B, Bittner M, Amundson S, Seligmann B, Korn R, Lenigk R, Zenhausern F. 2010. Biodosimetry on small blood volume using gene expression assay. Health Phys. 98:179–185.
  • Bujold K, Hauer-Jensen M, Donini O, Rumage A, Hartman D, Hendrickson HP, Stamatopoulos J, Naraghi H, Pouliot M, Ascah A, et al. 2016. Citrulline as a biomarker for gastrointestinal-acute radiation syndrome: species differences and experimental condition effects. Radiat Res. 186:71–78.
  • Centers for Disease Control and Prevention (CDC). 2015. Acute radiation syndrome: a fact sheet for clinicians. Available from: https://emergency.cdc.gov/radiation/arsphysicianfactsheet.asp
  • Chen C, Brenner DJ, Brown TR. 2011. Identification of urinary biomarkers from X-irradiated mice using NMR spectroscopy. Radiat Res. 175:622–630.
  • Chen C, Gonzalez FJ, Idle JR. 2007. LC-MS-based metabolomics in drug metabolism. Drug Metab Rev. 39:581–597.
  • Chen Z, Coy SL, Pannkuk EL, Laiakis EC, Hall AB, Fornace AJ, Vouros P. 2016. Rapid and high-throughput detection and quantitation of radiation biomarkers in human and nonhuman primates by differential mobility spectrometry-mass spectrometry. J Am Soc Mass Spectrom. 27:1626–1636.
  • Coeytaux K, Bey E, Christensen D, Glassman ES, Murdock B, Doucet C. 2015. Reported radiation overexposure accidents worldwide, 1980-2013: a systematic review. PLoS One. 10:e0118709.
  • Coleman CN, Adams S, Adrianopoli C, Ansari A, Bader JL, Buddemeier B, Caro JJ, Casagrande R, Case C, Caspary K, et al. 2012. Medical planning and response for a nuclear detonation: a practical guide. Biosecur Bioterror. 10:346–371.
  • Cook JA, Chandramouli GV, Anver MR, Sowers AL, Thetford A, Krausz KW, Gonzalez FJ, Mitchell JB, Patterson AD. 2016. Mass spectrometry-based metabolomics identifies longitudinal urinary metabolite profiles predictive of radiation-induced cancer. Cancer Res. 76:1569–1577.
  • Coy SL, Cheema AK, Tyburski JB, Laiakis EC, Collins SP, Fornace A. 2011. Radiation metabolomics and its potential in biodosimetry. Int J Radiat Biol. 87:802–823.
  • Coy SL, Krylov EV, Nazarov EG, Fornace AJ, Kidd RD. 2013. Differential mobility spectrometry with nanospray ion source as a compact detector for small organics and inorganics. Int J Ion Mobil Spectrom. 16:217–227.
  • Coy SL, Krylov EV, Schneider BB, Covey TR, Brenner DJ, Tyburski JB, Patterson AD, Krausz KW, Fornace AJ, Nazarov EG. 2010. Detection of radiation-exposure biomarkers by Differential Mobility Prefiltered Mass Spectrometry (DMS-MS). Int J Mass Spectrom 291:108–117.
  • Crawford PA, Gordon JI. 2005. Microbial regulation of intestinal radiosensitivity. Proc Natl Acad Sci USA. 102:13254–13259.
  • Di Girolamo F, Lante I, Muraca M, Putignani L. 2013. The role of mass spectrometry in the ‘Omics Era’. Curr Org Chem. 17:2891–2905.
  • DiCarlo AL, Maher C, Hick JL, Hanfling D, Dainiak N, Chao N, Bader JL, Coleman CN, Weinstock DM. 2011. Radiation injury after a nuclear detonation: medical consequences and the need for scarce resources allocation. Disaster Med Public Health Prep. 5(Suppl. 1):S32–S44.
  • DiCarlo AL, Ramakrishnan N, Hatchett RJ. 2010. Radiation combined injury: overview of NIAID research. Health Phys. 98:863–867.
  • Farese AM, MacVittie TJ. 2015. Filgrastim for the treatment of hematopoietic acute radiation syndrome. Drugs Today (Barc). 51:537–548.
  • Ferrer M, Méndez-García C, Rojo D, Barbas C, Moya A. 2016. Antibiotic use and microbiome function. Biochem Pharmacol. [Epub ahead of print]. doi: 10.1016/j.bcp.2016.09.007
  • Feurgard C, Bayle D, Guézingar F, Sérougne C, Mazur A, Lutton C, Aigueperse J, Gourmelon P, Mathé D. 1998. Effects of ionizing radiation (neutrons/gamma rays) on plasma lipids and lipoproteins in rats. Radiat Res. 150:43–51.
  • Flood AB, Ali AN, Boyle HK, Du G, Satinsky VA, Swarts SG, Williams BB, Demidenko E, Schreiber W, Swartz HM. 2016a. Evaluating the special needs of the military for radiation biodosimetry for tactical warfare against deployed troops: comparing military to civilian needs for biodosimetry methods. Health Phys. 111:169–182.
  • Flood AB, Williams BB, Schreiber W, Du G, Wood VA, Kmiec MM, Petryakov SV, Demidenko E, Swartz HM. and EPR, et al., 2016b. Advances in in vivo EPR Tooth BIOdosimetry: Meeting the targets for initial triage following a large-scale radiation event. Radiat Prot Dosimetry. 172:72–80.
  • Garty G, Turner HC, Salerno A, Bertucci A, Zhang J, Chen Y, Dutta A, Sharma P, Bian D, Taveras M, et al. 2016. The decade of the RABiT (2005-15). Radiat Prot Dosimetry. 172:201–206.
  • Goudarzi M, Mak TD, Chen C, Smilenov LB, Brenner DJ, Fornace AJ. 2014a. The effect of low dose rate on metabolomic response to radiation in mice. Radiat Environ Biophys. 53:645–657.
  • Goudarzi M, Mak TD, Jacobs JP, Moon BH, Strawn SJ, Braun J, Brenner DJ, Fornace AJ, Li HH. 2016. An integrated multi-omic approach to assess radiation injury on the host-microbiome axis. Radiat Res. 186:219–234.
  • Goudarzi M, Weber W, Mak TD, Chung J, Doyle-Eisele M, Melo D, Brenner DJ, Guilmette RA, Fornace AJ. 2014b. Development of urinary biomarkers for internal exposure by cesium-137 using a metabolomics approach in mice. Radiat Res. 181:54–64.
  • Goudarzi M, Weber WM, Chung J, Doyle-Eisele M, Melo DR, Mak TD, Strawn SJ, Brenner DJ, Guilmette R, Fornace AJ. 2015a. Serum dyslipidemia is induced by internal exposure to strontium-90 in mice, lipidomic profiling using a data-independent liquid chromatography-mass spectrometry approach. J Proteome Res. 14:4039–4049.
  • Goudarzi M, Weber WM, Mak TD, Chung J, Doyle-Eisele M, Melo DR, Brenner DJ, Guilmette RA, Fornace AJ. 2015b. Metabolomic and lipidomic analysis of serum from mice exposed to an internal emitter, cesium-137, using a shotgun LC-MS(E) approach. J Proteome Res. 14:374–384.
  • Goudarzi M, Weber WM, Mak TD, Chung J, Doyle-Eisele M, Melo DR, Strawn SJ, Brenner DJ, Guilmette RA, Fornace AJ. 2015c. A comprehensive metabolomic investigation in urine of mice exposed to strontium-90. Radiat Res. 183:665–674.
  • Grison S, Martin JC, Grandcolas L, Banzet N, Blanchardon E, Tourlonias E, Defoort C, Favé G, Bott R, Dublineau I, et al. 2012. The metabolomic approach identifies a biological signature of low-dose chronic exposure to cesium 137. J Radiat Res. 53:33–43.
  • Gruel G, Grégoire E, Lecas S, Martin C, Roch-Lefevre S, Vaurijoux A, Voisin P, Voisin P, Barquinero JF. 2013. Biological dosimetry by automated dicentric scoring in a simulated emergency. Radiat Res. 179:557–569.
  • Grundmann O, Mitchell GC, Limesand KH. 2009. Sensitivity of salivary glands to radiation: from animal models to therapies. J Dent Res. 88:894–903.
  • Homer MJ, Raulli R, DiCarlo-Cohen AL, Esker J, Hrdina C, Maidment BW, Moyer B, Rios C, Macchiarini F, Prasanna PG, et al. 2016. United States department of health and human services biodosimetry and radiological/nuclear medical countermeasure programs. Radiat Prot Dosimetry. 171:85–98.
  • Hu S, Blakely WF, Cucinotta FA. 2015. HEMODOSE: a biodosimetry tool based on multi-type blood cell counts. Health Phys. 109:54–68.
  • Hu ZP, Kim YM, Sowa MB, Robinson RJ, Gao X, Metz TO, Morgan WF, Zhang Q. 2012. Metabolomic response of human skin tissue to low dose ionizing radiation. Mol Biosyst. 8:1979–1986.
  • Islam A, Ghimbovschi S, Zhai M, Swift JM. 2015. An exploration of molecular correlates relevant to radiation combined skin-burn trauma. PLoS One. 10:e0134827.
  • Johnson CH, Gonzalez FJ. 2012. Challenges and opportunities of metabolomics. J Cell Physiol. 227:2975–2981.
  • Johnson CH, Patterson AD, Krausz KW, Kalinich JF, Tyburski JB, Kang DW, Luecke H, Gonzalez FJ, Blakely WF, Idle JR. 2012. Radiation metabolomics. 5. Identification of urinary biomarkers of ionizing radiation exposure in nonhuman primates by mass spectrometry-based metabolomics. Radiat Res. 178:328–340.
  • Johnson CH, Patterson AD, Krausz KW, Lanz C, Kang DW, Luecke H, Gonzalez FJ, Idle JR. 2011. Radiation metabolomics. 4. UPLC-ESI-QTOFMS-based metabolomics for urinary biomarker discovery in gamma-irradiated rats. Radiat Res. 175:473–484.
  • Jones JW, Bennett A, Carter CL, Tudor G, Hankey KG, Farese AM, Booth C, MacVittie TJ, Kane MA. 2015a. Citrulline as a biomarker in the non-human primate total- and partial-body irradiation models: correlation of circulating citrulline to acute and prolonged gastrointestinal injury. Health Phys. 109:440–451.
  • Jones JW, Scott AJ, Tudor G, Xu PT, Jackson IL, Vujaskovic Z, Booth C, MacVittie TJ, Ernst RK, Kane MA. 2014a. Identification and quantitation of biomarkers for radiation-induced injury via mass spectrometry. Health Phys. 106:106–119.
  • Jones JW, Tudor G, Bennett A, Farese AM, Moroni M, Booth C, MacVittie TJ, Kane MA. 2014b. Development and validation of a LC-MS/MS assay for quantitation of plasma citrulline for application to animal models of the acute radiation syndrome across multiple species. Anal Bioanal Chem. 406:4663–4675.
  • Jones JW, Tudor G, Li F, Tong Y, Katz B, Farese AM, MacVittie TJ, Booth C, Kane MA. 2015b. Citrulline as a biomarker in the murine total-body irradiation model: correlation of circulating and tissue citrulline to small intestine epithelial histopathology. Health Phys. 109:452–465.
  • Kam WW, Banati RB. 2013. Effects of ionizing radiation on mitochondria. Free Radic Biol Med. 65:607–619.
  • Khan AR, Rana P, Devi MM, Chaturvedi S, Javed S, Tripathi RP, Khushu S. 2011. Nuclear magnetic resonance spectroscopy-based metabonomic investigation of biochemical effects in serum of γ-irradiated mice. Int J Radiat Biol. 87:91–97.
  • Kim MY, Zhang T, Kraus WL. 2005. Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD + into a nuclear signal. Genes Dev. 19:1951–1967.
  • Kurland IJ, Broin PÓ, Golden A, Su G, Meng F, Liu L, Mohney R, Kulkarni S, Guha C. 2015. Integrative metabolic signatures for hepatic radiation injury. PLoS One. 10:e0124795.
  • Laiakis EC, Hyduke DR, Fornace AJ. 2012. Comparison of mouse urinary metabolic profiles after exposure to the inflammatory stressors γ radiation and lipopolysaccharide. Radiat Res. 177:187–199.
  • Laiakis EC, Mak TD, Anizan S, Amundson SA, Barker CA, Wolden SL, Brenner DJ, Fornace AJ. 2014a. Development of a metabolomic radiation signature in urine from patients undergoing total body irradiation. Radiat Res. 181:350–361.
  • Laiakis EC, Pannkuk EL, Diaz-Rubio ME, Wang YW, Mak TD, Simbulan-Rosenthal CM, Brenner DJ, Fornace AJ. 2016. Implications of genotypic differences in the generation of a urinary metabolomics radiation signature. Mutat Res. 788:41–49.
  • Laiakis EC, Strassburg K, Bogumil R, Lai S, Vreeken RJ, Hankemeier T, Langridge J, Plumb RS, Fornace AJ, Astarita G. 2014b. Metabolic phenotyping reveals a lipid mediator response to ionizing radiation. J Proteome Res. 13:4143–4154.
  • Laiakis EC, Strawn SJ, Brenner DJ, Fornace AJ. 2016. Assessment of saliva as a potential biofluid for biodosimetry: a pilot metabolomics study in mice. Radiat Res. 186:92–97.
  • Lamadrid Boada AI, Romero Aguilera I, Terzoudi GI, González Mesa JE, Pantelias G, García O. 2013. Rapid assessment of high-dose radiation exposures through scoring of cell-fusion-induced premature chromosome condensation and ring chromosomes. Mutat Res. 757:45–51.
  • Lanz C, Ledermann M, Slavík J, Idle JR. 2011. The production and composition of rat sebum is unaffected by 3 Gy gamma radiation. Int J Radiat Biol. 87:360–371.
  • Lanz C, Patterson AD, Slavík J, Krausz KW, Ledermann M, Gonzalez FJ, Idle JR. 2009. Radiation metabolomics. 3. Biomarker discovery in the urine of gamma-irradiated rats using a simplified metabolomics protocol of gas chromatography-mass spectrometry combined with random forests machine learning algorithm. Radiat Res. 172:198–212.
  • Ledney GD, Elliott TB. 2010. Combined injury: factors with potential to impact radiation dose assessments. Health Phys. 98:145–152.
  • Lee DY, Bowen BP, Nguyen DH, Parsa S, Huang Y, Mao JH, Northen TR. 2012. Low-dose ionizing radiation-induced blood plasma metabolic response in a diverse genetic mouse population. Radiat Res. 178:551–555.
  • Liang Q, Xu W, Hong Q, Xiao C, Yang L, Ma Z, Wang Y, Tan H, Tang X, Gao Y. 2015. Rapid comparison of metabolites in humans and rats of different sexes using untargeted UPLC-TOFMS and an in-house software platform. Eur J Mass Spectrom. 21:801–821.
  • Liu H, Wang Z, Zhang X, Qiao Y, Wu S, Dong F, Chen Y. 2013. Selection of candidate radiation biomarkers in the serum of rats exposed to gamma-rays by GC/TOFMS-based metabolomics. Radiat Prot Dosimetry. 154:9–17.
  • Lutgens LC, Deutz N, Granzier-Peeters M, Beets-Tan R, De Ruysscher D, Gueulette J, Cleutjens J, Berger M, Wouters B, von Meyenfeldt M, et al. 2004. Plasma citrulline concentration: a surrogate end point for radiation-induced mucosal atrophy of the small bowel. A feasibility study in 23 patients. Int J Radiat Oncol Biol Phys. 60:275–285.
  • Lutgens LC, Deutz NE, Gueulette J, Cleutjens JP, Berger MP, Wouters BG, von Meyenfeldt MF, Lambin P. 2003. Citrulline: a physiologic marker enabling quantitation and monitoring of epithelial radiation-induced small bowel damage. Int J Radiat Oncol Biol Phys. 57:1067–1074.
  • Majuelos-Melguizo J, Rodríguez MI, López-Jiménez L, Rodríguez-Vargas JM, Martí Martín-Consuegra JM, Serrano-Sáenz S, Gavard J, de Almodóvar JM, Oliver FJ. 2015. PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma. Oncotarget. 6:4790–4803.
  • Mak TD, Laiakis EC, Goudarzi M, Fornace AJ. 2015a. Selective paired ion contrast analysis: a novel algorithm for analyzing postprocessed LC-MS metabolomics data possessing high experimental noise. Anal Chem. 87:3177–3186.
  • Mak TD, Tyburski JB, Krausz KW, Kalinich JF, Gonzalez FJ, Fornace AJ. 2015b. Exposure to ionizing radiation reveals global dose- and time-dependent changes in the urinary metabolome of rat. Metabolomics. 11:1082–1094.
  • Manens L, Grison S, Bertho JM, Lestaevel P, Guéguen Y, Benderitter M, Aigueperse J, Souidi M. 2016. Chronic exposure of adult, postnatal and in utero rat models to low-dose 137Cesium: impact on circulating biomarkers. J Radiat Res. 57:607–619.
  • Melo DR, Lipsztein JL, de Oliveira CA, Bertelli L. 1994. 137Cs internal contamination involving a Brazilian accident, and the efficacy of Prussian Blue treatment. Health Phys. 66:245–252.
  • Menon SS, Uppal M, Randhawa S, Cheema MS, Aghdam N, Usala RL, Ghosh SP, Cheema AK, Dritschilo A. 2016. Radiation metabolomics: current status and future directions. Front Oncol. 6:20.
  • Mikkonen JJW, Herrala M, Soininen P, Lappalainen R, Tjäderhane L, Seitsalo H, Niemelä R, Salo T, Kullaa AM, Myllymaa S. 2014. Metabolic profiling of saliva in patients with primary Sj Gren s syndrome. Metabolomics. 182:149–153.
  • Moore HD, Ivey RG, Voytovich UJ, Lin C, Stirewalt DL, Pogosova-Agadjanyan EL, Paulovich AG. 2014. The human salivary proteome is radiation responsive. Radiat Res. 181:521–530.
  • Moulder JE. 2014. 2013 Dade W. Moeller lecture: medical countermeasures against radiological terrorism. Health Phys. 107:164–171.
  • Ó Broin P, Vaitheesvaran B, Saha S, Hartil K, Chen EI, Goldman D, Fleming WH, Kurland IJ, Guha C, Golden A. 2015. Intestinal microbiota-derived metabolomic blood plasma markers for prior radiation injury. Int J Radiat Oncol Biol Phys. 91:360–367.
  • Onal C, Kotek A, Unal B, Arslan G, Yavuz A, Topkan E, Yavuz M. 2011. Plasma citrulline levels predict intestinal toxicity in patients treated with pelvic radiotherapy. Acta Oncol. 50:1167–1174.
  • Pannkuk EL, Laiakis EC, Authier S, Wong K, Fornace AJ. 2015. Global metabolomic identification of long-term dose-dependent urinary biomarkers in nonhuman primates exposed to ionizing radiation. Radiat Res. 184:121–133.
  • Pannkuk EL, Laiakis EC, Mak TD, Astarita G, Authier S, Wong K, Fornace AJJ. 2016a. A lipidomic and metabolomic serum signature from nonhuman primates exposed to ionizing radiation. Metabolomics. 12:80.
  • Pannkuk EL, Laiakis EC, Authier S, Wong K, Fornace AJ. 2016b. Targeted metabolomics of nonhuman primate serum after exposure to ionizing radiation: potential tools for high-throughput biodosimetry. RSC Adv. 6:51192–51202.
  • Patel RM, Roback JD, Uppal K, Yu T, Jones DP, Josephson CD. 2015. Metabolomics profile comparisons of irradiated and nonirradiated stored donor red blood cells. Transfusion. 55:544–552.
  • Patrono C, Sterpone S, Testa A, Cozzi R. 2014. Polymorphisms in base excision repair genes: breast cancer risk and individual radiosensitivity. WJCO. 5:874–882.
  • Patterson AD, Lanz C, Gonzalez FJ, Idle JR. 2010. The role of mass spectrometry-based metabolomics in medical countermeasures against radiation. Mass Spectrom Rev. 29:503–521.
  • Patti GJ, Yanes O, Siuzdak G. 2012. Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 13:263–269.
  • Pernot E, Cardis E, Badie C. 2014. Usefulness of saliva samples for biomarker studies in radiation research. Cancer Epidemiol Biomarkers Prev. 23:2673–2680.
  • Sharma M, Moulder JE. 2013. The urine proteome as a radiation biodosimeter. Adv Exp Med Biol. 990:87–100.
  • Shim S, Jang WS, Lee SJ, Jin S, Kim J, Lee SS, Bang HY, Jeon BS, Park S. 2014. Development of a new minipig model to study radiation-induced gastrointestinal syndrome and its application in clinical research. Radiat Res. 181:387–395.
  • Singh VK, Newman VL, Romaine PL, Hauer-Jensen M, Pollard HB. 2016. Use of biomarkers for assessing radiation injury and efficacy of countermeasures. Expert Rev Mol Diagn. 16:65–81.
  • Soni S, Agrawal P, Kumar N, Mittal G, Nishad DK, Chaudhury NK, Bhatnagar A, Basu M, Chhillar N. 2016. Salivary biochemical markers as potential acute toxicity parameters for acute radiation injury: a study on small experimental animals. Hum Exp Toxicol. 35:221–228.
  • Sproull M, Camphausen K. 2016. State-of-the-art advances in radiation biodosimetry for mass casualty events involving radiation exposure. Radiat Res. 186:423–435.
  • Sullivan JM, Prasanna PG, Grace MB, Wathen LK, Wallace RL, Koerner JF, Coleman CN. 2013. Assessment of biodosimetry methods for a mass-casualty radiological incident: medical response and management considerations. Health Phys. 105:540–554.
  • Tandle AT, Shankavaram U, Brown MV, Ho J, Graves C, Lita E, Pfohl J, Mohney R, Tofilon P, Camphausen K. 2013. Urinary metabolomic profiling of patients with glioblastoma multiforme. J Proteomics Bioinform. S6:003.
  • Tang X, Zheng M, Zhang Y, Fan S, Wang C. 2013. Estimation value of plasma amino acid target analysis to the acute radiation injury early triage in the rat model. Metabolomics. 9:853–863.
  • Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M. 2013. Capillary electrophoresis mass spectrometry based metabolome analysis of serum and saliva from neurodegenerative dementia patients. J Proteomics Bioinform. 34:2865–2872.
  • Tyburski JB, Patterson AD, Krausz KW, Slavík J, Fornace AJ, Gonzalez FJ, Idle JR. 2008. Radiation metabolomics. 1. Identification of minimally invasive urine biomarkers for gamma-radiation exposure in mice. Radiat Res. 170:1–14.
  • Tyburski JB, Patterson AD, Krausz KW, Slavík J, Fornace AJ, Gonzalez FJ, Idle JR. 2009. Radiation metabolomics. 2. Dose- and time-dependent urinary excretion of deaminated purines and pyrimidines after sublethal gamma-radiation exposure in mice. Radiat Res. 172:42–57.
  • Wang C, Yang J, Nie J. 2009. Plasma phospholipid metabolic profiling and biomarkers of rats following radiation exposure based on liquid chromatography-mass spectrometry technique. Biomed Chromatogr. 23:1079–1085.
  • Wang J, Shao L, Hendrickson HP, Liu L, Chang J, Luo Y, Seng J, Pouliot M, Authier S, Zhou D, et al. 2015. Total body irradiation in the “hematopoietic” dose range induces substantial intestinal injury in non-human primates. Radiat Res. 184:545–553.
  • Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. 2009. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 106:3698–3703.
  • Xu Y, Turner HC, Garty G, Brenner D. 2013. A rapid, quantitative method to characterize the human lymphocyte concentration for automated high-throughput radiation biodosimetry. J Proteomics Bioinform. 2:16–19.
  • Zhang Y, Zhou X, Li C, Wu J, Kuo JE, Wang C. 2014a. Assessment of early triage for acute radiation injury in rat model based on urinary amino acid target analysis. Mol Biosyst. 10:1441–1449.
  • Zhang Y, Sun J, Lin CC, Abemayor E, Wang MB, Wong DTW. 2014b. The emerging landscape of salivary diagnostics. Oral Health Dent Manag. 13:200–210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.