130
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Different responses of Drosophila subobscura isofemale lines to extremely low frequency magnetic field (50 Hz, 0.5 mT): fitness components and locomotor activity

, , , , &
Pages 544-552 | Received 30 Jun 2016, Accepted 27 Nov 2016, Published online: 12 Jan 2017

References

  • Abril S, Oliveras J, Gómez C. 2010. Effect of temperature on the development and survival of the Argentine ant, Linepithema humile. J Insect Sci. 10:97.
  • Adey WR. 1993. Biological effects of electromagnetic fields. J Cell Biochem. 51:410–416.
  • Afonso JM, Volz A, Hernandez M, Ruttkay H, Gonzalez M, Larruga JM, Cabrera VM, Sperlich D. 1990. Mitochondrial DNA variation and genetic structure in Old-World populations of Drosophila subobscura. Mol Biol Evol. 7:123–142.
  • Argue KJ, Neckameyer WS. 2013. Sexually dimorphic recruitment of dopamine neurons into the stress response circuitry. Behav Neurosci. 127:734–743.
  • Bauréus Koch CL, Sommarin M, Persson BR, Salford LG, Eberhardt JL. 2003. Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics. 24:395–402.
  • Belgacem YH, Martin JR. 2002. Neuroendocrine control of a sexually dimorphic behavior by a few neurons of the pars intercerebralis in Drosophila. Proc Natl Acad Sci USA. 99:15154–15158.
  • Belgacem YH, Martin JR. 2006. Disruption of insulin pathways alters trehalose level and abolishes sexual dimorphism in locomotor activity in Drosophila. J Neurobiol. 66:19–32.
  • Bersani F, Marinelli F, Ognibene A, Matteucci A, Cecchi S, Santi S, Squarzoni S, Maraldi NM. 1997. Intramembrane protein distribution in cell cultures is affected by 50 Hz pulsed magnetic fields. Bioelectromagnetics. 18:463–469.
  • Castro JA, Ramon M, Picornell A, Moya A. 1999. The genetic structure of Drosophila subobscura populations from the islands of Majorca and Minorca (Balearic Islands, Spain) based on allozymes and mitochondrial DNA. Heredity (Edinb). 83:271–279.
  • Chen A, Ng F, Lebestky T, Grygoruk A, Djapri C, Lawal HO, Zaveri HA, Mehanzel F, Najibi R, Seidman G, et al. 2013. Dispensable, redundant, complementary, and cooperative roles of dopamine, octopamine, and serotonin in Drosophila melanogaster. Genetics. 193:159–176.
  • Dimitrijević D, Janać B, Savić T. 2013. Temporal pattern of Drosophila subobscura locomotor activity after exposure to extremely low frequency magnetic field (50 Hz, 0.5 mT). Dros Inf Serv. 96:84–90.
  • Dimitrijević D, Savić T, Anđelković M, Prolić Z, Janać B. 2014. Extremely low frequency magnetic field (50 Hz, 0.5 mT) modifies fitness components and locomotor activity of Drosophila subobscura. Int J Radiat Biol. 90:337–343.
  • Fedele G, Edwards MD, Bhutani S, Hares JM, Murbach M, Green EW, Dissel S, Hastings MH, Rosato E, Kyriacou CP. 2014. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genet. 10:e1004804.
  • Ferguson CT, O’Neill TL, Audsley N, Isaac RE. 2015. The sexually dimorphic behaviour of adult Drosophila suzukii: elevated female locomotor activity and loss of siesta is a post-mating response. J Exp Biol. 218:3855–3861.
  • Gegear RJ, Casselman A, Waddell S, Reppert SM. 2008. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature. 454:1014–1018.
  • Gegear RJ, Foley LE, Casselman A, Reppert SM. 2010. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature. 463:804–807.
  • Gonet B, Kosik-Bogacka DI, Kuźna-Grygiel W. 2009. Effects of extremely low-frequency magnetic fields on the oviposition of Drosophila melanogaster over three generations. Bioelectromagnetics. 30:687–689.
  • Goodman R, Weisbrot D, Uluc A, Henderson A. 1992. Transcription in Drosophila melanogaster salivary gland cells is altered following exposure to low-frequency electromagnetic fields: analysis of chromosome 3R. Bioelectromagnetics. 13:111–118.
  • Graham JH, Fletcher D, Tigue J, McDonald M. 2000. Growth and developmental stability of Drosophila melanogaster in low frequency magnetic fields. Bioelectromagnetics. 21:465–472.
  • Jandacka P, Kasparova B, Jiraskova Y, Dedkova K, Mamulova-Kutlakova K, Kukutschova J. 2015. Iron-based granules in body of bumblebees. Biometals. 28:89–99.
  • Jankowska M, Pawlowska-Mainville A, Stankiewicz M, Rogalska J, Wyszkowska J. 2015. Exposure to 50 Hz electromagnetic field changes the efficiency of the scorpion alpha toxin. J Venom Anim Toxins Incl Trop Dis. 21:38.
  • Kikuchi T, Ogawa M, Otaka Y, Furuta M. 1998. Multigeneration exposure test of Drosophila melanogaster to ELF magnetic fields. Bioelectromagnetics. 19:335–340.
  • Koana T, Okada MO, Takashima Y, Ikehata M, Miyakoshi J. 2001. Involvement of eddy currents in the mutagenicity of ELF magnetic fields. Mutat Res. 476:55–62.
  • Kolokytha PD, Fantinou AA, Papadoulis GT. 2011. Temperature and diet effects on immature development of predatory mite Typhlodromus athenas Swirski and Ragusa (Acari: Phyotseiidae). Environ Entomol. 40:1577–1584.
  • Latorre A, Hernandez C, Martinez D, Castro JA, Ramon MM, Moya A. 1992. Population structure and mitochondrial DNA gene flow in Old World populations of Drosophila subobscura. Heredity (Edinb). 68:15–24.
  • Latorre A, Moya A, Ayala FJ. 1986. Evolution of mitochondrial DNA in Drosophila subobscura. Proc Natl Acad Sci USA. 83:8649–8653.
  • Leal S, Neckameyer W. 2002. Pharmacological evidence for GABAergic regulation of specific behaviors in Drosophila melanogaster. J Neurobiol. 50:245–261.
  • Li SS, Zhang ZY, Yang CJ, Lian HY, Cai P. 2013. Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF-EMF exposure. Mutat Res. 758:95–103.
  • Lima SQ, Miesenböck G. 2005. Remote control of behavior through genetically targeted photostimulation of neurons. Cell. 121:141–152.
  • Ma TH, Chu KC. 1993. Effect of the extremely low frequency (ELF) electromagnetic field (EMF) on developing embryos of the fruit fly (Drosophila melanogaster L.). Mutat Res. 303:35–39.
  • Majeed ZR, Abdeljaber E, Soveland R, Cornwell K, Bankemper A, Koch F, Cooper RL. 2016. Modulatory action by the serotonergic system: behavior and neurophysiology in Drosophila melanogaster. Neural Plast. 2016:7291438.
  • Marley R, Giachello CN, Scrutton NS, Baines RA, Jones AR. 2014. Cryptochrome-dependent magnetic field effect on seizure response in Drosophila larvae. Sci Rep. 4:5799.
  • Martin JR, Ernst R, Heisenberg M. 1998. Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn Mem. 5:179–191.
  • Martin JR, Raabe T, Heisenberg M. 1999. Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J Comp Physiol A. 185:277–288.
  • Martinez D, Moya A, Latorre A, Fereres A. 1992. Mitochondrial DNA variation in Rhopalosiphum padi (Homoptera: Aphididae) populations from four Spanish localities. Ann Entomol Soc Am. 85:241–246.
  • Mazzotta G, Rossi A, Leonardi E, Mason M, Bertolucci C, Caccin L, Spolaore B, Martin AJ, Schlichting M, Grebler R, et al. 2013. Fly cryptochrome and the visual system. Proc Natl Acad Sci USA. 110:6163–6168.
  • McGurk L, Berson A, Bonini NM. 2015. Drosophila as an in vivo model for human neurodegenerative disease. Genetics. 201:377–402.
  • Mirabolghasemi G, Azarnia M. 2002. Developmental changes in Drosophila melanogaster following exposure to alternating electromagnetic fields. Bioelectromagnetics. 23:416–420.
  • Osborne RH. 1996. Insect neurotransmission: neurotransmitters and their receptors. Pharmacol Ther. 69:117–142.
  • Pan W, Wan G, Xu J, Li X, Liu Y, Qi L, Chen F. 2016. Evidence for the presence of biogenic magnetic particles in the nocturnal migratory brown planthopper, Nilaparvata lugens. Sci Rep. 6:18771.
  • Panagopoulos DJ, Karabarbounis A, Lioliousis C. 2013. ELF alternating magnetic field decreases reproduction by DNA damage induction. Cell Biochem Biophys. 67:703–716.
  • Partch CL, Sancar A. 2005. Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem Photobiol. 81:1291–1304.
  • Patenković A, Savić T, Kenig B, Kurbalija Novičić Z, Anđelković M. 2015. The impact of extremely low frequency electromagnetic field (50 Hz, 0.25 mT) on fitness components and wing traits of Drosophila subobscura. Genetika. 47:967–982.
  • Pendleton RG, Rasheed A, Sardina T, Tully T, Hillman R. 2002. Effects of tyrosine hydroxylase mutants on locomotor activity in Drosophila: a study in functional genomics. Behav Genet. 32:89–94.
  • Phillips JB, Jorge PE, Muheim R. 2010a. Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms. J R Soc Interface. 7:S241–S256.
  • Phillips JB, Muheim R, Jorge PE. 2010b. A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception? J Exp Biol. 213:3247–3255.
  • Ramírez E, Monteagudo JL, García-Gracia M, Delgado JM. 1983. Oviposition and development of Drosophila modified by magnetic fields. Bioelectromagnetics. 4:315–326.
  • Ritz T, Ahmad M, Mouritsen H, Wiltschko R, Wiltschko W. 2010. Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing. J R Soc Interface. 7:S135–S146.
  • Spasić S, Kesić S, Stojadinović G, Petković B, Todorović D. 2015. Effects of the static and ELF magnetic fields on the neuronal population activity in Morimus funereus (Coleoptera, Cerambycidae) antennal lobe revealed by wavelet analysis. Comp Biochem Physiol, Part A Mol Integr Physiol. 181:27–35.
  • Strauss R, Hanesch U, Kinkelin M, Wolf R, Heisenberg M. 1992. No-bridge of Drosophila melanogaster: portrait of a structural brain mutant of the central complex. J Neurogenet. 8:125–155.
  • Strauss R. 2002. The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol. 12:633–638.
  • Todorović D, Mirčić D, Ilijin L, Mrdaković M, Vlahović M, Prolić Z, Perić Mataruga V. 2012. Effect of magnetic fields on antioxidative defense and fitness-related traits of Baculum extradentatum (Insecta, Phasmatodea). Bioelectromagnetics. 33:265–273.
  • Todorović D, Prolić Z, Petković B, Kalauzi A. 2015. Effects of two different waveforms of ELF MF on bioelectrical activity of antennal lobe neurons of Morimus funereus (Insecta, Coleoptera). Int J Radiat Biol. 91:435–442.
  • Trawiński T, Szczygieł M, Wyszkowska J, Kluszczyński K. 2010. Analysis of magnetic field distribution and mechanical vibration of magnetic field exciter under different voltage supply. In: Pietka E, Kawa J, editors. Information technologies in biomedicine. Berlin: Springer Berlin Heidelberg; pp 613–622. [Series: Advances in intelligent and soft computing].
  • Vácha M, Půzová T, Drstková D. 2008. Effect of light wavelength spectrum on magnetic compass orientation in Tenebrio molitor. J Comp Physiol a Neuroethol Sens Neural Behav Physiol. 194:853–859.
  • World Health Organization (WHO). 2002. Establishing a dialogue on risks from electromagnetic fields. Geneva, Switzerland: WHO.
  • Wiltschko R, Wiltschko W. 2012. Magnetoreception. Adv Exp Med Biol. 739:126–141.
  • Winklhofer M, Kirschvink JL. 2010. A quantitative assessment of torque-transducer models for magnetoreception. J R Soc Interface. 7:S273–S289.
  • Yellman C, Tao H, He B, Hirsh J. 1997. Conserved and sexually dimorphic behavioral responses to biogenic amines in decapitated Drosophila. Proc Natl Acad Sci USA. 94:4131–4136.
  • Zar JH. 1999. Biostatistical analysis, 4th ed. Upper Saddle River, NJ: Prentice Hall; p. 662.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.