214
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Reactive oxygen species-based measurement of the dependence of the Coulomb nanoradiator effect on proton energy and atomic Z value

, , & ORCID Icon
Pages 1239-1247 | Received 05 Jan 2017, Accepted 25 Jul 2017, Published online: 16 Aug 2017

References

  • Baluchamy S, Ravichandran P, Periyakaruppan A, Ramesh V, Hall JC, Zhang Y, Jejelowo O, Gridley DS, Wu H, Ramesh GT. 2010. Induction of cell death through alteration of oxidants and antioxidants in lung epithelial cells exposed to high energy protons. J Biol Chem. 285:24769–24774.
  • Belkić D. 2010. Review of theories on ionization in fast ion-atom collisions with prospects for applications to hadron therapy. J Math Chem. 47:1366–1419.
  • Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP. 2010. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater. 2:23–30.
  • Cheng NN, Starkewolf Z, Davidson A, Sharmah A, Lee C, Lien J, Guo T. 2012. Chemical enhancement by nanomaterials under X-ray irradiation. J Am Chem Soc. 134:1950–1953.
  • Gokhberg K, Kolorenč P, Kuleff AI, Cederbaum LS. 2014. Site- and energy-selective slow-electron production through intermolecular Coulombic decay. Nature. 505:661–663.
  • Hall EJ, Giaccia AM. 2012. Physics and chemistry of radiation absorption: radiobiology for radiologist. 7th ed. Philadelphia: Lippincott Williams & Wilkins; p. 3–11 (Chapter 1).
  • Hergenhahn U. 2012. Production of low kinetic energy electrons and energetic ion pairs by intermolecular Coulombic decay. Int J Radiat Biol. 88:871–883.
  • Huang G, Chen H, Dong Y, Luo X, Yu H, Moore Z, Bey EA, Boothman DA, Gao J. 2013. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics. 3:116–126.
  • Ionita P, Gibert BC, Chechik V. 2005. Radical mechanism of a place-exchnage reaction of Au nanoparticles. Angew Chem Int Ed. 44:3720–3722.
  • Ishii K, Morita S. 1985. Atomic bremsstrahlung produced by heavy-ion bombardments. Phys Rev A Gen Phys. 31:1168–1170.
  • Ishii K, Morita S. 2012. Continuous backgrounds in PIXE. Int J PIXE. 01:1–29.
  • Jeon JK, Han SM, MIN SK, Seo SJ, Ihm K, Chang W-S, Kim J-K. 2016. Coulomb nanoradiator-mediated, site-specific thrombolytic proton treatment with a traversing pristine Bragg peak. Sci Rep. 6:37848.
  • Juzenas P, Generalov R, Juzeniene A, Moan J. 2008. Generation of nitrogen oxide and oxygen radicals by quantum dots. J Biomed Nanotechnol. 4:450–456.
  • Kim H-K, Titze J, Schöffler M, Trinter F, Waitz M, Voigtsberger J, Sann H, Meckel M, Stuck C, Lenz U, et al. 2011. Enhanced production of low energy electrons by alpha particle impact. Proc Natl Acad Sci USA. 108:11821–11824.
  • Kim J-K, Seo SJ, Kim H-T, Kim K-H, Chung MH, Kim KR, Ye SJ. 2012. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Phys Med Biol. 57:8309–8323.
  • Kim J-K, Seo SJ, Kim K-H, Kim TJ, Chung MH, Kim KR, Yang TK. 2010. Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect. Nanotechnology. 21:425102.
  • Kim K-H, Kim H-T, Kim J-H, Seo S-J, Chung D-S, Kim J-K. 2009. Investigation of tumor cell cytoxicity from particle induced x-ray emission from 45 MeV proton beam irradiated ferrite nanoparticle. Int J PIXE. 19:143–155.
  • Klein S, Sommer A, Distel LVR, Neuhuber W, Kryschi C. 2012. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun. 425:393–397.
  • Lapicki G. 2005. The status of theoretical K-shell ionization cross sections by protons. X-Ray Spectrom. 34:269–278.
  • Lapicki G. 2008. Scaling of analytical cross sections for K-shell ionization by nonrelativistic protons to cross sections by protons at relativistic velocities. J Phys B: At Mol Opt Phys. 41:115201.
  • Misawa M, Takahashi J. 2011. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations. Nanomed: Nanotechnol Biol Med. 7:604–614.
  • Mitteer RAJ, Wang Y, Shah J, Gordon S, Fager M, Butter P-P, Kim HJ, Guardiola-Salmeron C, Carabe-Fernandez A, Fan Y. 2015. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci Rep. 5:13961.
  • Morita S, Kamiya M. 1977. Inner-shell ionization by heavy charged particles. Chin J Phys. 15:199–228.
  • Mukoyama T, Sarkadi L. 1979. Electronic relativistic effects in K-shell ionization. Bull Inst Chem Res. 57:33.
  • Ogawa Y, Kobayashi T, Nishioka A, Kariya S, Hamasato S, Seguchi H, Yoshida S. 2003. Radiation-induced oxidative DNA damage, 8-oxoguanine, in human peripheral T cells. Int J Mol Med. 11:27–32.
  • Ogawa Y, Nishioka A, Kobayashi T, Kariya S, Hamasato S, Saibara T, Seguchi H, Yoshida S. 2001. Radiation-induced apoptosis of human peripheral T cells: analyses with cDNA expression arrays and mitochondrial membrane potential assay. Int J Mol Med. 7:603–607.
  • Ogawa Y. 2016. Paradigm shift in radiation biology/radiation oncology-exploitation of the “H2O2 Effect” for radiotherapy using low-LET (linear energy transfer) radiation such as X-rays and high-energy electrons. Cancers. 8:28.
  • Park SI, Lim JH, Hwang YH, Kim KH, Kim SM, Kim JH, Kim CG, Kim CO. 2007. In vivo and in vitro antitumor activity of doxorubicin‐loaded magnetic fluids. Phys Status Solidi (c). 4:4345–4351.
  • Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, Le Sech C, Lacombe S. 2010. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology. 21:085103.
  • Porcel E, Tillement O, Lux F, Mowat P, Usami N, Kobayashi K, Furusawa Y, Le Sech C, Li S, Lacombe S. 2014. Gadolinium-based nanoparticles to improve the hadrontherapy performances. Nanomed.: Nanotechnol Biol Med. 10:1601–1608.
  • Rappole CA, Mitra K, Wen H. 2012. Dynamic fluorescence imaging of the free radical products of X-ray absorption in live cells. Opt Nanoscopy. 2012. 1:1. 1:5.
  • Seo SJ, Han SM, Cho JH, Hyodo K, Zaboronok A, You H, Peach K, Hill MA, Kim J-K. 2015. Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core-inner-shell excitation by proton or monochromatic X-ray irradiation: implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement. Radiat Environ Biophys. 54:423–431.
  • Sera K, Ishii K, Kamiya M, Kuwako A, Morita S. 1980. K-shell ionization of Al and Cu for 0.5–40-MeV-proton bombardment. Phys Rev A. 21:1412–1418.
  • Shmatov ML. 2015. An expected increase in the efficiency of antiproton cancer therapy with the use of gold nanoparticles. Phys Med Biol. 60:N383–N390.
  • Singh N, Jenkins GJS, Nelson BC, Marquis BJ, Maffeis TGG, Brownd AP, Williams PM, Wright CJ, Doak SH. 2012. The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials. 33:163–170.
  • Tommasino F, Durante M. 2015. Proton radiobiology. Cancers (Basel). 7:353–381.
  • Trinter F, Schoeffler MS, Kim HK, Sturm FP, Cole K, Neumann N, Vredenborg A, Williams J, Bocharova I, Guillemin R, et al. 2014. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers. Nature. 505:664–666.
  • Verma HR. 2007. Atomic and nuclear analytical methods: XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques. New York: Springer; p. 10.
  • Vijayakumar R, Koltypin Y, Felner I, Gedanken A. 2000. Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater Sci Eng: A. 286:101–105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.