314
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Occam’s broom and the dirty DSB: cytogenetic perspectives on cellular response to changes in track structure and ionization density

Pages 1099-1108 | Received 27 Aug 2019, Accepted 11 Nov 2019, Published online: 23 Jan 2020

References

  • Asaithamby A, Chen DJ. 2011. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation. Mutat Res. 711(1–2):87–99.
  • Asaithamby A, Hu B, Chen DJ. 2011. Unrepaired clustered DNA lesions induce chromosome breakage in human cells. Proc Natl Acad Sci. 108(20):8293–8298.
  • Barendsen GW. 1994. The relationships between RBE and LET for different types of lethal damage in mammalian cells: biophysical and molecular mechanisms. Radiat Res. 139(3):257–270.
  • Bedford JS, Goodhead DT. 1989. Breakage of human interphase chromosomes by alpha particles and X-rays. Int J Radiat Biol. 55(2):211–216.
  • Bender MA, Griggs HG, Bedford JS. 1974. Mechanisms of chromosomal aberration production. 3. Chemicals and ionizing radiation. Mutat Res. 23(2):197–212.
  • Blocher D. 1988. DNA double-strand break repair determines the RBE of alpha-particles. Int J Radiat Biol. 54(5):761–771.
  • Brenner DJ, Okladnikova N, Hande P, Burak L, Geard CR, Azizova T. 2001. Biomarkers specific to densely-ionising (high LET) radiations. Radiat Prot Dosimetry. 97(1):69–73.
  • Brenner DJ, Sachs RK. 1994. Chromosomal ‘fingerprints’ of prior exposure to densely ionizing radiation. Radiat Res. 140(1):134–142.
  • Cornforth MN, Anur P, Wang N, Robinson E, Ray FA, Bedford JS, Loucas BD, Williams ES, Peto M, Spellman P, et al. 2018. Molecular cytogenetics guides massively parallel sequencing of a radiation-induced chromosome translocation in human cells. Radiat Res. 190(1):88–97.
  • Cornforth M, Shuryak I, Loucas B. 2017. Lethal and nonlethal chromosome aberrations by gamma rays and heavy ions: a cytogenetic perspective on dose fractionation in hadron radiotherapy. Transl Cancer Res. 6(S5):S769–S778.
  • Cornforth MN, Bedford JS. 1983. X-ray-induced breakage and rejoining of human interphase chromosomes. Science. 222(4628):1141–1143.
  • Cornforth MN, Bedford JS. 1987. A quatitiative comparison of potentially lethal damage repair and the rejoining of interphase chromosome breaks in low passage normal human fibroblasts. Radiat Res. 111(3):385–405.
  • Cornforth MN, Loucas BD. 2019. A Cytogenetic Profile of Radiation Damage. Radiat Res. 191(1):1–19.
  • Cornforth MN. 1998. Radiation-induced damage and the formation of chromosomal aberrations. In: Nickoloff JA, Hoekstra M, editors. DNA Damage and Repair. NJ: Humana Press; p. 559–585.
  • Cornforth MN. 2001. Analyzing radiation-induced complex chromosome rearrangements by combinatorial painting. Radiat Res. 155(5):643–659.
  • Cornforth MN. 2006. Perspectives on the formation of radiation-induced exchange aberrations. DNA Repair. 5(9-10):1182–1191.
  • Costes SV, Boissière A, Ravani S, Romano R, Parvin B, Barcellos-Hoff MH. 2006. Imaging features that discriminate between foci induced by high- and low-LET radiation in human fibroblasts. Radiat Res. 165(5):505–515.
  • Costes SV, Chiolo I, Pluth JM, Barcellos-Hoff MH, Jakob B. 2010. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutat Res. 704(1-3):78–87.
  • Cremer T, Cremer C. 2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2(4):292–301.
  • Cremer T, Kreth G, Koester H, Fink RH, Heintzmann R, Cremer M, Solovei I, Zink D, Cremer C. 2000. Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Critic Rev Eukaryotic Gene Expression. 10(2):179–212.
  • Darroudi F, Fomina J, Meijers M, Natarajan AT. 1998. Kinetics of the formation of chromosome aberrations in X-irradiated human lymphocytes, using PCC and FISH. Mutat Res Fundamental Mol Mech Mutagen. 404(1–2):55–65.
  • Frankenberg D, Brede HJ, Schrewe UJ, Steinmetz C, Frankenberg-Schwager M, Kasten G, Pralle E. 1999. Induction of DNA double-strand breaks by 1 H and 4 He ions in primary human skin fibroblasts in the LET range of 8 to 124 keV/μm. Radiat Res. 151(5):540–549.
  • Friedrich T, Ilicic K, Greubel C, Girst S, Reindl J, Sammer M, Schwarz B, Siebenwirth C, Walsh DWM, Schmid TE, et al. 2018. DNA damage interactions on both nanometer and micrometer scale determine overall cellular damage. Sci Rep. 8(1):16063.
  • Georgakilas AG, O'Neill P, Stewart RD. 2013. Induction and repair of clustered DNA lesions: what do we know so far? Radiat Res. 180(1):100–109.
  • Goodhead DT, Thacker J, Cox R, Weiss Lecture. 1993. Effects of radiations of different qualities on cells: molecular mechanisms of damage and repair. Int J Radiat Biol. 63(5):543–556.
  • Goodhead DT. 1985. Saturable repair models of radiation action in mammalian cells. Radiat Res. 8:S58–S67.
  • Goodhead DT. 1989. The initial physical damage produced by ionizing radiations. Int J Radiat Biol. 56(5):623–634.
  • Hada M, Georgakilas AG. 2008. Formation of clustered DNA damage after high-LET irradiation: a review. JRR. 49(3):203–210.
  • Haynes RH, Eckardt F, Kunz BA. 1984. The DNA damage-repair hypothesis in radiation biology: comparison with classical hit theory. Br J Cancer. 6:81–90.
  • Hei TK, Zhu LX, Vannais D, Waldren CA. 1994. Molecular analysis of mutagenesis by high LET radiation. Adv Space Res. 14(10):355–361.
  • Iliakis G, Mladenova V, Sharif M, Chaudhary S, Mavragani IV, Soni A, Saha J, Schipler A, Mladenov E. 2019. Defined biological models of high-let radiation lesions. Radiat Prot Dosimetry. 183(1–2):60–68.
  • Iliakis G, Wang H, Perrault AR, Boecker W, Rosidi B, Windhofer F, Wu W, Guan J, Terzoudi G, Pantelias G, et al. 2004. Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res. 104(1–4):14–20.
  • Kallioniemi A, Kallioniemi O, Sudar D, Rutovitz D, Gray J, Waldman F, Pinkel D. 1992. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 258(5083):818–821.
  • Karlsson KH, Stenerlow B. 2004. Focus formation of DNA repair proteins in normal and repair-deficient cells irradiated with high-LET ions. Radiat Res. 161(5):517–527.
  • Kellerer AM, Rossi HH. 1972. The theory of dual radiation action. Curr Top Radiat Res Q. 8:85–158.
  • Lea DE. 1946. Actions of Radiations on Living Cells. London: Cambridge University Press.
  • Leatherbarrow EL, Harper JV, Cucinotta FA, O'Neill P. 2006. Induction and quantification of gamma-H2AX foci following low and high LET-irradiation. Int J Radiat Biol. 82(2):111–118.
  • Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC. 1988. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet. 80(3):224–234.
  • Lomax ME, Gulston MK, O'Neill P. 2002. Chemical aspects of clustered DNA damage induction by ionising radiation. Radiat Prot Dosimetry. 99(1–4):63–68.
  • Lorat Y, Brunner CU, Schanz S, Jakob B, Taucher-Scholz G, Rübe CE. 2015. Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy–the heavy burden to repair. DNA Repair. 28:93–106.
  • Lorat Y, Timm S, Jakob B, Taucher-Scholz G, Rübe CE. 2016. Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiation. Radiother Oncol. 121(1):154–161.
  • Loucas BD, Cornforth MN. 2013. The LET dependence of unrepaired chromosome damage in human cells: a break too far? Radiat Res. 179(4):393–405.
  • Loucas BD, Eberle RL, Durante M, et al. 2004. Complex chromatid-isochromatid exchanges following irradiation with heavy ions? Cytogenet Genome Res. 104(1–4):206–210.
  • Loucas BD, Geard CR. 1994. Kinetics of chromosome rejoining in normal human fibroblasts after exposure to low- and high-LET radiations. Radiat Res. 138(3):352–360.
  • Macphail SH, BanÁth JP, Yu TY, Chu EHM, Lambur H, Olive PL. 2003. Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol. 79(5):351–358.
  • Mladenov E, Iliakis G. 2011. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res. 711(1–2):61–72.
  • Moore S, Stanley FKT, Goodarzi AA. 2014. The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation – No simple task. DNA Repair. 17:64–73.
  • Morris T, Masson W, Singleton B, Thacker J. 1993. Analysis of large deletions in the HPRT gene of primary human fibroblasts using the polymerase chain reaction. Somat Cell Mol Genet. 19(1):9–19.
  • Mozumder A, Magee JL. 1966. Model of tracks of ionizing radiations for radical reaction mechanisms. Radiat Res. 28(2):203–214.
  • Neary GJ, Preston RJ, Savage JR. 1967. Chromosome aberrations and the theory of RBE. 3. Evidence from experiments with soft x-rays, and a consideration of the effects of hard x-rays. Int J Rad Biol Related Stud Phys Chem Med. 12(4):317–345.
  • Neary GJ, Savage JR. 1966. Chromosome aberrations and the theory of RBE. II. Evidence from track-segment experiments with protons and alpha particles Int J Rad Biol Related Stud Phys Chem Med. 11(3):209–223.
  • Neary GJ. 1965. Chromosome aberrations and the theory of RBE. 1. General considerations. Int J Rad Biol Related Stud Phys Chem Med. 9(5):477–502.
  • Neubauer S, Arutyunyan R, Stumm M, Dörk T, Bendix R, Bremer M, Varon R, Sauer R, Gebhart E. 2002. Radiosensitivity of ataxia telangiectasia and Nijmegen breakage syndrome homozygotes and heterozygotes as determined by three-color FISH chromosome painting. Radiat Res. 157(3):312–321.
  • Neumaier T, Swenson J, Pham C, Polyzos A, Lo AT, Yang P, Dyball J, Asaithamby A, Chen DJ, Bissell MJ, et al. 2012. Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc Natl Acad Sci USA. 109(2):443–448.
  • Newman HC, Prise KM, Folkard M, Michael BD. 1997. DNA double-strand break distributions in X-ray and alpha-particle irradiated V79 cells: evidence for non-random breakage. Int J Radiat Biol. 71(4):347–363.
  • Nikjoo H, O'Neill P, Wilson WE, Goodhead DT. 2001. Computational approach for determining the spectrum of DNA damage induced by ionizing radiation [Research Support, Non-U.S. Gov’t]. Radiat Res. 156(5):577–583.
  • Okayasu R, Pantelias GE, Iliakis G. 1993. Increased frequency of formation of interphase ring-chromosomes in radiosensitive irs-1 cells exposed to X-rays. Mut Res/DNA Repair. 294(3):199–206.
  • Okayasu R. 2012. Repair of DNA damage induced by accelerated heavy ions–a mini review. Int J Cancer. 130(5):991–1000.
  • Olive PL. 1998. The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiat Res. 150(5):S42–S51.
  • Pang D, Winters TA, Jung M, Purkayastha S, Cavalli LR, Chasovkikh S, Haddad BR, Dritschilo A. 2011. Radiation-generated short DNA fragments may perturb non-homologous end-joining and induce genomic instability. JRR. 52(3):309–319.
  • Pantelias GE, Iliakis GE, Sambani CD, Politis G. 1993. Biological dosimetry of absorbed radiation by C-banding of interphase chromosomes in peripheral blood lymphocytes. Int J Radiat Biol. 63(3):349–354.
  • Pastwa E, Neumann RD, Mezhevaya K, Winters TA. 2003. Repair of radiation-induced DNA double-strand breaks is dependent upon radiation quality and the structural complexity of double-strand breaks. Radiat Res. 159(2):251–261.
  • Pinto M, Prise KM, Michael BD. 2005. Evidence for complexity at the nanometer scale of radiation-induced DNA DSBs as a determinant of rejoining kinetics. Radiat Res. 164(1):73–85.
  • Revell SH. 1983. Relationship between chromosome damage and cell death. In: Ishihara T, Sasaki MS, editors. Radiation-induced chromosome damage in man. New York: Liss; p. 215–233.
  • Richardson C, Jasin M. 2000a. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature. 405(6787):697–700.
  • Richardson C, Jasin M. 2000b. Recombination between two chromosomes: implications for genomic integrity in mammalian cells. Cold Spring Harbor Symposia Quant Biol. 65(0):553–560.
  • Ritter S, Durante M. 2010. Heavy-ion induced chromosomal aberrations: A review. Mut Res/Gen Toxicol Environ Mutagen. 701(1):38–46.
  • Ritter S, Kraft-Weyrather W, Scholz M, Kraft G. 1992. Induction of chromosome aberrations in mammalian cells after heavy ion exposure. Adv Space Res. 12(2–3):119–125.
  • Rothkamm K, Lobrich M. 2003. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA. 100(9):5057–5062.
  • Ryan TL, Pantelias AG, Terzoudi GI, Pantelias GE, Balajee AS. 2019. Use of human lymphocyte G0 PCCs to detect intra- and inter-chromosomal aberrations for early radiation biodosimetry and retrospective assessment of radiation-induced effects. PLoS One. 14(5):e0216081-e0216081.
  • Schipler A, Iliakis G. 2013. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res. 41(16):7589–7605.
  • Schipler A, Mladenova V, Soni A, Nikolov V, Saha J, Mladenov E, Iliakis G. 2016. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment. Nucleic Acids Res. 44(16):7673–7690.
  • Singleton BK, Griffin CS, Thacker J. 2002. Clustered DNA damage leads to complex genetic changes in irradiated human cells. Cancer Res. 62(21):6263–6269.
  • Staaf E, Brehwens K, Haghdoost S, Czub J, Wojcik A. 2012. Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha particles. Genome Integr. 3(1):8.
  • Sutherland BM, Bennett PV, Schenk H, Sidorkina O, Laval J, Trunk J, Monteleone D, Sutherland J. 2001. Clustered DNA damages induced by high and low LET radiation, including heavy ions. Physica Med. 17(Suppl 1):202–204.
  • Taucher-Scholz G, Heilmann J, Kraft G. 1996. Induction and rejoining of DNA double-strand breaks in cho cells after heavy ion irradiation. Adv Space Res. 18(1–2):83–92.
  • Visser AE, Jaunin F, Fakan S, Aten JA. 2000. High resolution analysis of interphase chromosome domains. J Cell Sci. 113(Pt 14):2585–2593.
  • Wang H, Zhang X, Wang P, Yu X, Essers J, Chen D, Kanaar R, Takeda S, Wang Y. 2010. Characteristics of DNA-binding proteins determine the biological sensitivity to high-linear energy transfer radiation. Nucleic Acids Res. 38(10):3245–3251.
  • Ward JF, Blakely WF, Joner EI. 1985. Mammalian cells are not killed by DNA single-strand breaks caused by hydroxyl radicals from hydrogen peroxide. Radiat Res. 103(3):383–392.
  • Ward JF. 1981. Some biochemical consequences of the spatial distribution of ionizing radiation-produced free radicals. Radiat Res. 86(2):185–195.
  • Ward JF. 1985. Biochemistry of DNA Lesions. Radiat Res. 104(2):S103–S111.
  • Ward JF. 1994. The complexity of DNA damage: relevance to biological consequences. Int J Radiat Biol. 66(5):427–432.
  • Werner E, Wang Y, Doetsch PW. 2017. A single exposure to low- or high-LET radiation induces persistent genomic damage in mouse epithelial cells in vitro and in lung tissue. Radiat Res. 188(4):373–380.
  • Wu H, Sachs RK, Yang TC. 1998. Radiation-induced total-deletion mutations in the human hprt gene: a biophysical model based on random walk interphase chromatin geometry. Int J Radiat Biol. 73(2):149–156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.