645
Views
25
CrossRef citations to date
0
Altmetric
Reviews

The role of radiation induced oxidative stress as a regulator of radio-adaptive responses

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 561-576 | Received 09 Jul 2019, Accepted 08 Jan 2020, Published online: 07 Feb 2020

References

  • Ahmed KM, Li JJ. 2008. NF-kappa B-mediated adaptive resistance to ionizing radiation. Free Radic Biol Med. 44(1):1–13.
  • Ahmed NA, Radwan NM, Aboul Ezz HS, Salama NA. 2017. The antioxidant effect of Green Tea Mega EGCG against electromagnetic radiation-induced oxidative stress in the hippocampus and striatum of rats. Electromagn Biol Med. 36(1):63–73.
  • Airiau K, Djavaheri-Mergny M. 2016. The complex crosstalk between autophagy and ROS signalling pathways. In: Maiuri MC, De Stefano D, editors. Autophagy networks in inflammation. Cham: Springer International Publishing; p. 43–60.
  • Alers S, Löffler AS, Wesselborg S, Stork B. 2012. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 32(1):2–11.
  • Alexandrou AT, Li JJ. 2014. Cell cycle regulators guide mitochondrial activity in radiation-induced adaptive response. Antioxid Redox Signal. 20(9):1463–1480.
  • Al-Meer RS, El-Habit OH, Al-Hazaa AA. 2011. Adaptive response to ionizing radiation and the role of vitamin B 12 in amelioration radiation protection standards. J King Saud Univ-Sci. 23(2):197–204.
  • Al-Serori H, Ferk F, Kundi M, Bileck A, Gerner C, Mišík M, Nersesyan A, Waldherr M, Murbach M, Lah TT, et al. 2018. Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells. PLoS One. 13(4):e0193677.
  • Anandhan A, Hernandez-Franco P, Franco R. 2015. Oxidative stress, redox homeostasis and NF-κB signaling in neurodegeneration. In: Oxidative stress: diagnostics, prevention, and therapy. ACS Symposium Series. Vol. 2. ACS Publications; p. 53–90.
  • Antal O, Hackler L, Shen J, Mán I, Hideghéty K, Kitajka K, Puskás LG. 2014. Combination of unsaturated fatty acids and ionizing radiation on human glioma cells: cellular, biochemical and gene expression analysis. Lipids Health Dis. 13(1):142.
  • Anuranjani, Bala M. 2014. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - implication in modification of radiation damage. Redox Biol. 2:832–846.
  • Aypar U, Morgan WF, Baulch JE. 2011. Radiation-induced epigenetic alterations after low and high LET irradiations. Mutat Res. 707(1–2):24–33.
  • Bakthavatchalu V, Dey S, Xu Y, Noel T, Jungsuwadee P, Holley AK, Dhar SK, Batinic-Haberle I, St Clair DK. 2012. Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polγ against UV-induced inactivation. Oncogene. 31(17):2129–2139.
  • Beissert S, Bluestone JA, Mindt I, Voskort M, Metze D, Mehling A, Luger TA, Schwarz T, Grabbe S. 1999. Reduced ultraviolet-induced carcinogenesis in mice with a functional disruption in B7-mediated costimulation. J Immunol. 163(12):6725–6731.
  • Bian C, Qin W-J, Zhang C-Y, Zou G-L, Zhu Y-Z, Chen J, Zhao R, Wang Y-Y, Zhe H. 2018. Thalidomide (THD) alleviates radiation induced lung fibrosis (RILF) via down-regulation of TGF-β/Smad3 signaling pathway in an Nrf2-dependent manner. Free Radic Biol Med. 129:446–453.
  • Billiard F, Buard V, Benderitter M, Linard C. 2011. Abdominal gamma-radiation induces an accumulation of function-impaired regulatory T cells in the small intestine. Int J Radiat Oncol Biol Phys. 80(3):869–876.
  • Burma S, Chen DJ. 2004. Role of DNA–PK in the cellular response to DNA double-strand breaks. DNA Repair. 3(8–9):909–918.
  • Calandra T, Roger T. 2003. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol. 3(10):791–800.
  • Cameron BD, Sekhar KR, Ofori M, Freeman ML. 2018. The role of Nrf2 in the response to normal tissue radiation injury. Radiat Res. 190(2):99–106.
  • Candeias SM, Mika J, Finnon P, Verbiest T, Finnon R, Brown N, Bouffler S, Polanska J, Badie C. 2017. Low-dose radiation accelerates aging of the T-cell receptor repertoire in CBA/Ca mice. Cell Mol Life Sci. 74(23):4339–4351.
  • Caricchio R, Reap EA, Cohen PL. 1998. Fas/Fas ligand interactions are involved in ultraviolet-B-induced human lymphocyte apoptosis. J Immunol. 161(1):241–251.
  • Carroll PA, Diolaiti D, McFerrin L, Gu H, Djukovic D, Du J, Cheng PF, Anderson S, Ulrich M, Hurley JB, et al. 2015. Deregulated Myc requires MondoA/Mlx for metabolic reprogramming and tumorigenesis. Cancer Cell. 27(2):271–285.
  • Cavalcanti MB, Fernandes TS, Silva EB, Amaral A. 2015. Correlation between radiation dose and p53 protein expression levels in human lymphocytes. An Acad Bras Ciênc. 87(3):1783–1790.
  • Cerosaletti K, Wright J, Concannon P. 2006. Active role for nibrin in the kinetics of atm activation. Molecular and Cellular Biology. 26(5):1691–1699.
  • Chang W-L, Hsu L-C, Leu W-J, Chen C-S, Guh J-H. 2015. Repurposing of nitroxoline as a potential anticancer agent against human prostate cancer: a crucial role on AMPK/mTOR signaling pathway and the interplay with Chk2 activation. Oncotarget. 6(37):39806–39820.
  • Chaurasia M, Bhatt AN, Das A, Dwarakanath BS, Sharma K. 2016. Radiation-induced autophagy: mechanisms and consequences. Free Radical Research. 50(3):273–290.
  • Che M, Wang R, Li X, Wang H-Y, Zheng XS. 2016. Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discovery Today. 21(1):143–149.
  • Chen H-C, Jeng Y-M, Yuan R-H, Hsu H-C, Chen Y-L. 2012. SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis. Ann Surg Oncol. 19(6):2011–2019.
  • Chen YH, Pan SL, Wang JC, Kuo SH, Cheng JC, Teng CM. 2014. Radiation-induced VEGF-C expression and endothelial cell proliferation in lung cancer. Strahlenther Onkol. 190(12):1154–1162.
  • Chen Z, Wang B, Yu F, Chen Q, Tian Y, Ma S, Liu X. 2016. The roles of mitochondria in radiation-induced autophagic cell death in cervical cancer cells. Tumor Biol. 37(3):4083–4091.
  • Cig B, Naziroglu M. 2015. Investigation of the effects of distance from sources on apoptosis, oxidative stress and cytosolic calcium accumulation via TRPV1 channels induced by mobile phones and Wi-Fi in breast cancer cells. Biochim Biophys Acta. 1848(10 Pt B):2756–2765.
  • Cleasby A, Yon J, Day PJ, Richardson C, Tickle IJ, Williams PA, Callahan JF, Carr R, Concha N, Kerns JK, et al. 2014. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PloS One. 9(6):e98896.
  • Criswell T, Leskov K, Miyamoto S, Luo G, Boothman DA. 2003. Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene. 22(37):5813–5827.
  • Cruz-Gregorio A, Martínez-Ramírez I, Pedraza-Chaverri J, Lizano M. 2019. Reprogramming of energy metabolism in response to radiotherapy in head and neck squamous cell carcinoma. Cancers. 11(2):182.
  • Dar S, Chhina J, Mert I, Chitale D, Buekers T, Kaur H, Giri S, Munkarah A, Rattan R. 2017. Bioenergetic adaptations in chemoresistant ovarian cancer cells. Sci Rep. 7(1):8760.
  • Das U, Manna K, Khan A, Sinha M, Biswas S, Sengupta A, Chakraborty A, Dey S. 2017. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway. Free Radic Res. 51(1):47–63.
  • Datta K, Suman S, Fornace AJ Jr. 2014. Radiation persistently promoted oxidative stress, activated mTOR via PI3K/Akt, and downregulated autophagy pathway in mouse intestine. Int J Biochem Cell Biol. 57:167–176.
  • Day TK, Zeng G, Hooker AM, Bhat M, Turner DR, Sykes PJ. 2007. Extremely low doses of X-radiation can induce adaptive responses in mouse prostate. Dose-Response. 5(4):dose-response–07-019. Day.
  • Delic J, Morange M, Magdelenat H. 1993. Ubiquitin pathway involvement in human lymphocyte gamma-irradiation-induced apoptosis. Mol Cell Biol. 13(8):4875–4883.
  • Deng L, Liang H, Fu S, Weichselbaum RR, Fu YX. 2016. From DNA Damage to Nucleic Acid Sensing: A Strategy to Enhance Radiation Therapy. Clin Cancer Res. 22(1):20–25.
  • Deorukhkar A, Ahuja N, Mercado AL, Diagaradjane P, Raju U, Patel N, Mohindra P, Diep N, Guha S, Krishnan S. 2015. Zerumbone increases oxidative stress in a thiol‐dependent ROS‐independent manner to increase DNA damage and sensitize colorectal cancer cells to radiation. Cancer Med. 4(2):278–292.
  • Derer A, Frey B, Fietkau R, Gaipl US. 2016. Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunol Immunother. 65(7):779–786.
  • Deshmukh P, Unni S, Krishnappa G, Padmanabhan B. 2017. The Keap1–Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev. 9:41–56.
  • Deshmukh PS, Banerjee BD, Abegaonkar MP, Megha K, Ahmed RS, Tripathi AK, Mediratta PK. 2013. Effect of low level microwave radiation exposure on cognitive function and oxidative stress in rats. Indian J Biochem Biophys. 50(2):114–119.
  • Deshmukh PS, Nasare N, Megha K, Banerjee BD, Ahmed RS, Singh D, Abegaonkar MP, Tripathi AK, Mediratta PK. 2015. Cognitive impairment and neurogenotoxic effects in rats exposed to low-intensity microwave radiation. Int J Toxicol. 34(3):284–290.
  • Destefanis M, Viano M, Leo C, Gervino G, Ponzetto A, Silvagno F. 2015. Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines. Int J Radiat Biol. 91(12):964–972.
  • Dobrzyński L, Fornalski KW, Reszczyńska J, Janiak MK. 2019. Modeling cell reactions to ionizing radiation: from a lesion to a cancer. Dose-Response. 17(2):1559325819838434.
  • Eghlidospour M, Mortazavi SM, Yousefi F, Mortazavi SA. 2015. New horizons in enhancing the proliferation and differentiation of neural stem cells using stimulatory effects of the short time exposure to radiofrequency radiation. J Biomed Phys Eng. 5(3):95–104.
  • Ermakov A, Konkova M, Kostyuk S, Izevskaya V, Baranova A, Veiko N. 2013. Oxidized extracellular DNA as a stress signal in human cells. Oxid Med Cell Longev. 2013:1–12.
  • Eser O, Songur A, Aktas C, Karavelioglu E, Caglar V, Aylak F, Ozguner F, Kanter M. 2013. The effect of electromagnetic radiation on the rat brain: an experimental study. Turkish Neurosurg. 23(6):707–715.
  • Forestier A, Douki T, De Rosa V, Beal D, Rachidi W. 2015. Combination of abeta secretion and oxidative stress in an alzheimer-like cell line leads to the over-expression of the nucleotide excision repair proteins DDB2 and XPC. IJMS. 16(8):17422–17444.
  • Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo‐San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI. 2017. Molecular definitions of autophagy and related processes. EMBO J. 36(13):1811–1836.
  • Galluzzi L, Bravo-San Pedro JM, Demaria S, Formenti SC, Kroemer G. 2017. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol. 14(4):247–258.
  • Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G. 2017. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 16(7):487–511.
  • Gehrke N, Mertens C, Zillinger T, Wenzel J, Bald T, Zahn S, Tüting T, Hartmann G, Barchet W. 2013. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity. 39(3):482–495.
  • Gentile F, Arcaro A, Pizzimenti S, Daga M, Cetrangolo GP, Dianzani C, Lepore A, Graf M, Ames PRJ, Barrera G. 2017. DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity. AIMS Genet. 4(2):103–137.
  • Ghanbari Movahed Z, Rastegari-Pouyani M, Mohammadi M, Mansouri K. 2019. Cancer cells change their glucose metabolism to overcome increased ROS: one step from cancer cell to cancer stem cell? Biomedicine & Pharmacotherapy. 112:108690.
  • Ghazizadeh V, Nazıroğlu M. 2014. Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats. Metab Brain Dis. 29(3):787–799.
  • Gloire G, Legrand-Poels S, Piette J. 2006. NF-κB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 72(11):1493–1505.
  • Green DR, Levine B. 2014. To be or not to be? How selective autophagy and cell death govern cell fate. Cell. 157(1):65–75.
  • Guida MS, Abd El-Aal A, Kafafy Y, Salama SF, Badr BM, Badr G. 2016. Thymoquinone rescues T lymphocytes from gamma irradiation-induced apoptosis and exhaustion by modulating pro-inflammatory cytokine levels and PD-1, Bax, and Bcl-2 signaling. Cell Physiol Biochem. 38(2):786–800.
  • Gupta Y, Pasupuleti V, Du W, Welford SM. 2016. Macrophage migration inhibitory factor secretion is induced by ionizing radiation and oxidative stress in cancer cells. PLoS One. 11(1):e0146482.
  • Guven M, Brem R, Macpherson P, Peacock M, Karran P. 2015. Oxidative damage to RPA limits the nucleotide excision repair capacity of human cells. J Invest Dermatol. 135(11):2834–2841.
  • Habraken Y, Piette J. 2006. NF-κB activation by double-strand breaks. Biochem Pharmacol. 72(9):1132–1141.
  • Hagiwara Y, Sato H, Permata TBM, Niimi A, Yamauchi M, Oike T, Nakano T, Shibata A. 2018. Analysis of programmed death-ligand 1 expression in primary normal human dermal fibroblasts after DNA damage. Human Immunol. 79(8):627–631.
  • Harjes U, Kalucka J, Carmeliet P. 2016. Targeting fatty acid metabolism in cancer and endothelial cells. Crit Rev Oncol/Hematol. 97:15–21.
  • Hazra TK, Das A, Das S, Choudhury S, Kow YW, Roy R. 2007. Oxidative DNA damage repair in mammalian cells: a new perspective. DNA Repair. 6(4):470–480.
  • Hekim N, Cetin Z, Nikitaki Z, Cort A, Saygili EI. 2015. Radiation triggering immune response and inflammation. Cancer Lett. 368(2):156–163.
  • Henneke P, Takeuchi O, Malley R, Lien E, Ingalls R R, Freeman M W, Mayadas T, Nizet V, Akira S, Kasper D L, et al. 2002. Cellular activation, phagocytosis, and bactericidal activity against group B streptococcus involve parallel myeloid differentiation factor 88-dependent and independent signaling pathways. J Immunol. 169(7):3970–3977.
  • Hollmann G, Linden R, Giangrande A, Allodi S. 2016. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean. Aquat Toxicol. 173:1–8.
  • Hollville E, Carroll RG, Cullen SP, Martin SJ. 2014. Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. Mol Cell. 55(3):451–466.
  • Hou Q, Wang M, Wu S, Ma X, An G, Liu H, Xie F. 2015. Oxidative changes and apoptosis induced by 1800-MHz electromagnetic radiation in NIH/3T3 cells. Electromagn Biol Med. 34(1):85–92.
  • Hur GM, Lewis J, Yang Q, Lin Y, Nakano H, Nedospasov S, Liu ZG. 2003. The death domain kinase RIP has an essential role in DNA damage-induced NF-κB activation. Genes Dev. 17(7):873–882.
  • Ikehata H, Yamamoto M. 2018. Roles of the KEAP1-NRF2 system in mammalian skin exposed to UV radiation. Toxicol Appl Pharmacol. 360:69–77.
  • Ikushima T. 1987. Chromosomal responses to ionizing radiation reminiscent of an adaptive response in cultured Chinese hamster cells . Mutat Res. 180(2):215–221.
  • Ilnytskyy Y, Kovalchuk O. 2011. Non-targeted radiation effects—an epigenetic connection. Mutat Res. 714(1–2):113–125.
  • Ishaq M, Khan MA, Sharma K, Sharma G, Dutta RK, Majumdar S. 2014. Gambogic acid induced oxidative stress dependent caspase activation regulates both apoptosis and autophagy by targeting various key molecules (NF-κB, Beclin-1, p62 and NBR1) in human bladder cancer cells. Biochim Biophys Acta. 1840(12):3374–3384.
  • Iyer R, Lehnert BE. 2002. Low dose, low-LET ionizing radiation-induced radioadaptation and associated early responses in unirradiated cells. Mutat Res. 503(1–2):1–9.
  • Jain V, Das B. 2017. Global transcriptome profile reveals abundance of DNA damage response and repair genes in individuals from high level natural radiation areas of Kerala coast. PLoS One. 12(11):e0187274.
  • James S, Enger S, Makinodan T. 1991. DNA strand breaks and DNA repair response in lymphocytes after chronic in vivo exposure to very low doses of ionizing radiation in mice. Mutat Res. 249(1):255–263.
  • Jang J, Huh YJ, Cho H-J, Lee B, Park J, Hwang D-Y, Kim D-W. 2017. SIRT1 enhances the survival of human embryonic stem cells by promoting DNA repair. Stem Cell Reports. 9(2):629–641.
  • Jang SS, Kim HG, Han JM, Lee JS, Choi MK, Huh GJ, Son CG. 2015. Modulation of radiation-induced alterations in oxidative stress and cytokine expression in lung tissue by Panax ginseng extract. Phytother Res. 29(2):201–209.
  • Jiang P, Mizushima N. 2014. Autophagy and human diseases. Cell Res. 24(1):69–79.
  • Jin L, Zhou Y. 2019. Crucial role of the pentose phosphate pathway in malignant tumors. Oncol Lett. 17(5):4213–4221.
  • Kahya MC, Nazıroğlu M, Çiğ B. 2014. Selenium reduces mobile phone (900 MHz)-induced oxidative stress, mitochondrial function, and apoptosis in breast cancer cells. Biol Trace Elem Res. 160(2):285–293.
  • Kam WW-Y, Banati RB. 2013. Effects of ionizing radiation on mitochondria. Free Radic Biol Med. 65:607–619.
  • Kang R, Livesey KM, Zeh HJ, Loze MT, Tang D. 2010. HMGB1: a novel Beclin 1-binding protein active in autophagy. Autophagy. 6(8):1209–1211.
  • Kang R, Zeh H, Lotze MT, Tang D. 2011. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 18(4):571–580.
  • Kaspar JW, Niture SK, Jaiswal AK. 2009. Nrf2: INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med. 47(9):1304–1309.
  • Kaszuba-Zwolinska J, Gremba J, Galdzinska-Calik B, Wojcik-Piotrowicz K, Thor PJ. 2015. Electromagnetic field induced biological effects in humans. Przegl Lek. 72(11):636–641.
  • Kawachi Y, Xu X, Taguchi S, Sakurai H, Nakamura Y, Ishii Y, Fujisawa Y, Furuta J, Takahashi T, Itoh K, et al. 2008. Attenuation of UVB-induced sunburn reaction and oxidative DNA damage with no alterations in UVB-induced skin carcinogenesis in Nrf2 gene-deficient mice. J Invest Dermatol. 128(7):1773–1779.
  • Kazemi E, Mortazavi SM, Ali-Ghanbari A, Sharifzadeh S, Ranjbaran R, Mostafavi-Pour Z, Zal F, Haghani M. 2015. Effect of 900 MHz electromagnetic radiation on the induction of ROS in human peripheral blood mononuclear cells. J Biomed Phys Eng. 5(3):105–114.
  • Kellner R, De la Concepcion JC, Maqbool A, Kamoun S, Dagdas YF. 2017. ATG8 expansion: a driver of selective autophagy diversification? Trends Plant Sci. 22(3):204–214.
  • Khan A, Manna K, Das D K, Kesh S B, Sinha M, Das U, Biswas S, Sengupta A, Sikder K, Datta S, et al. 2015. Gossypetin ameliorates ionizing radiation-induced oxidative stress in mice liver–a molecular approach. Free Radic Res. 49(10):1173–1186.
  • Kim BM, Rhee JS, Lee KW, Kim MJ, Shin KH, Lee SJ, Lee YM, Lee JS. 2015. UV-B radiation-induced oxidative stress and p38 signaling pathway involvement in the benthic copepod Tigriopus japonicus. Comp Biochem Physiol C Toxicol Pharmacol. 167:15–23.
  • Kim J. 2018. Regulation of immune cell functions by metabolic reprogramming. J Immunol Res. 2018:1–12.
  • Kobashigawa S, Kashino G, Mori H, Watanabe M. 2015. Relief of delayed oxidative stress by ascorbic acid can suppress radiation-induced cellular senescence in mammalian fibroblast cells. Mech Ageing Dev. 146–148:65–71.
  • Konkova MS, Kaliyanov AA, Sergeeva VA, Abramova MS, Kostyuk SV. 2019. Oxidized cell-free DNA is a factor of stress signaling in radiation-induced bystander effects in different types of human cells. Int J Genom. 2019:1–7.
  • Korzeneva IB, Kostuyk SV, Ershova ES, Skorodumova EN, Zhuravleva VF, Pankratova GV, Volkova IV, Stepanova EV, Porokhovnik LN, Veiko NN. 2016. Human circulating ribosomal DNA content significantly increases while circulating satellite III (1q12) content decreases under chronic occupational exposure to low-dose gamma-neutron and tritium beta-radiation. Mutat Res. 791:49–60.
  • Kostyuk S, Malinovskaya E, Ermakov A, Smirnova T, Kameneva L, Chvartatskaya O, Loseva P, Ershova E, Lyubchenko L, Veiko N. 2012. Fragments of cell-free DNA increase transcription in human mesenchymal stem cells, activate TLR-dependent signal pathway, and suppress apoptosis. Biochem Moscow Suppl Ser B. 6(1):68–74.
  • Koundouros N, Poulogiannis G. 2020. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 122:4–22.
  • Kroemer G, Mariño G, Levine B. 2010. Autophagy and the integrated stress response. Mol Cell. 40(2):280–293.
  • Kuehne A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, Gallinat S, Terstegen L, Lucius R, Hildebrand J, et al. 2015. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol Cell. 59(3):359–371.
  • Kuhmann C, Weichenhan D, Rehli M, Plass C, Schmezer P, Popanda O. 2011. DNA methylation changes in cells regrowing after fractioned ionizing radiation. Radiother Oncol. 101(1):116–121.
  • Kumar B, Kowluru A, Kowluru RA. 2015. Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci. 56(5):2985–2992.
  • Kunkel M, Moergel M, Stockinger M, Jeong J-H, Fritz G, Lehr H-A, Whiteside TL. 2007. Overexpression of GLUT-1 is associated with resistance to radiotherapy and adverse prognosis in squamous cell carcinoma of the oral cavity. Oral Oncol. 43(8):796–803.
  • Kunt H, Senturk I, Gonul Y, Korkmaz M, Ahsen A, Hazman O, Bal A, Genc A, Songur A. 2016. Effects of electromagnetic radiation exposure on bone mineral density, thyroid, and oxidative stress index in electrical workers. OncoTargets Ther. 9:745–754.
  • Lee IC, Kim SH, Baek HS, Moon C, Kang SS, Kim SH, Kim YB, Shin IS, Kim JC. 2014. The involvement of Nrf2 in the protective effects of diallyl disulfide on carbon tetrachloride-induced hepatic oxidative damage and inflammatory response in rats. Food Chem Toxicol. 63:174–185.
  • Lee SB, Han S-H, Kim M-J, Shim S, Shin H-Y, Lee S-J, Kim H W, Jang W-S, Seo S, Jang S, et al. 2017. Post-irradiation promotes susceptibility to reprogramming to pluripotent state in human fibroblasts. Cell Cycle. 16(21):2119–2127.
  • Li D, Chen R, Wang YW, Fornace AJ Jr, Li HH. 2018. Prior irradiation results in elevated programmed cell death protein 1 (PD-1) in T cells. Int J Radiat Biol. 94(5):488–494.
  • Li F, Zheng X, Liu Y, Li P, Liu X, Ye F, Zhao T, Wu Q, Jin X, Li Q. 2016. Different roles of CHOP and JNK in mediating radiation-induced autophagy and apoptosis in breast cancer cells. Radiat Res. 185(5):539–548.
  • Li L, Chen Y, Gibson SB. 2013. Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal. 25(1):50–65.
  • Li R, Zhou P, Guo Y, Lee J-S, Zhou B. 2017. Tris (1, 3-dichloro-2-propyl) phosphate induces apoptosis and autophagy in SH-SY5Y cells: involvement of ROS-mediated AMPK/mTOR/ULK1 pathways. Food Chem Toxicol. 100:183–196.
  • Li Y-L, Chang JT, Lee L-Y, Fan K-H, Lu Y-C, Li Y-C, Chiang C-H, You G-R, Chen H-Y, Cheng A-J. 2017. GDF15 contributes to radioresistance and cancer stemness of head and neck cancer by regulating cellular reactive oxygen species via a SMAD-associated signaling pathway. Oncotarget. 8(1):1508.
  • Liang Y, Peng H. 2016. STING-cytosolic DNA sensing: the backbone for an effective tumor radiation therapy. Ann Transl Med. 4(3):60.
  • Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, Tan S, Tian Y, Rao S, Chen X. 2019. The roles of glucose metabolic reprogramming in chemo-and radio-resistance. J Exp Clin Cancer Res. 38(1):218.
  • Lindqvist LM, Heinlein M, Huang DC, Vaux DL. 2014. Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc Natl Acad Sci. 111(23):8512–8517.
  • Liu SZ, Jin SZ, Liu XD, Sun YM. 2001. Role of CD28/B7 costimulation and IL-12/IL-10 interaction in the radiation-induced immune changes. BMC Immunol. 2:8.
  • Loser K, Scherer A, Krummen MB, Varga G, Higuchi T, Schwarz T, Sharpe AH, Grabbe S, Bluestone JA, Beissert S. 2005. An important role of CD80/CD86-CTLA-4 signaling during photocarcinogenesis in mice. J Immunol. 174(9):5298–5305.
  • Luo YP, Ma HR, Chen JW, Li JJ, Li CX. 2014. Effect of American Ginseng Capsule on the liver oxidative injury and the Nrf2 protein expression in rats exposed by electromagnetic radiation of frequency of cell phone. Zhongguo Zhong Xi Yi Jie He Za Zhi. 34(5):575–580. chi.
  • Marullo R, Werner E, Zhang H, Chen GZ, Shin DM, Doetsch PW. 2015. HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells. CARCIN. 36(11):1397–1406.
  • Maurer GD, Heller S, Wanka C, Rieger J, Steinbach JP. 2019. Knockdown of the TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) sensitizes glioma cells to hypoxia, irradiation and temozolomide. IJMS. 20(5):1061.
  • Mavragani IV, Nikitaki Z, Souli MP, Aziz A, Nowsheen S, Aziz K, Rogakou E, Georgakilas AG. 2017. Complex DNA damage: a route to radiation-induced genomic instability and carcinogenesis. Cancers. 9(12):91.
  • Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, Abegaonkar MP. 2012. Microwave radiation induced oxidative stress, cognitive impairment and inflammation in brain of Fischer rats. Indian J Exp Biol. 50(12):889–896.
  • Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, Ahmed R, Abegaonkar MP. 2015. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology. 51:158–165.
  • Mendes F, Sales T, Domingues C, Schugk S, Abrantes AM, Goncalves AC, Teixo R, Silva R, Casalta-Lopes J, Rocha C, et al. 2015. Effects of X-radiation on lung cancer cells: the interplay between oxidative stress and P53 levels. Med Oncol. 32(12):266.
  • Milowska K, Grabowska K, Gabryelak T. 2014. Applications of electromagnetic radiation in medicine. Postepy Hig Med Dosw. 68:473–482.
  • Miura S, Yamaguchi M, Yoshino H, Nakai Y, Kashiwakura I. 2019. Dose-dependent increase of Nrf2 target gene expression in mice exposed to ionizing radiation. Radiat Res. 191(2):176–188.
  • Moreno-Villanueva M, Zhang Y, Feiveson A, Mistretta B, Nelman-Gonzalez M, Krieger S, Gunaratne P, Crucian B, Wu H. 2019. Single-cell RNA-sequencing identifies activation of TP53 and STAT1 pathways in human T lymphocyte subpopulations in response to ex vivo radiation exposure. Int J Mol Sci. 20(9):2316.
  • Morohoshi F, Munakata N. 1987. Multiple species of Bacillus subtilis DNA alkyltransferase involved in the adaptive response to simple alkylating agents. J Bacteriol. 169(2):587–592.
  • Mortazavi S, Niroomand-Rad A, Mozdarani H, Roshan-Shomal P, Razavi-Toosi S, Zarghani H. 2012. Short-term exposure to high levels of natural external gamma radiation does not induce survival adaptive response. Int J Radiat Res. 10(3):165–170.
  • Mortazavi S, Niroomand-Rad A, Roshan-Shomal P, Razavi-Toosi S, Mossayeb-Zadeh M, Moghadam M. 2014. Does short-term exposure to elevated levels of natural gamma radiation in Ramsar cause oxidative stress? Int J App Basic Med Res. 4(2):72.
  • Moscat J, Karin M, Diaz-Meco MT. 2016. p62 in cancer: signaling adaptor beyond autophagy. Cell. 167(3):606–609.
  • Mullarky E, Cantley LC. 2015. Diverting glycolysis to combat oxidative stress. In: Nakao K, Minato N, Uemoto S, editors. Innovative medicine. Tokyo: Springer; p. 3–23.
  • Nagar S, Smith LE, Morgan WF. 2003. Characterization of a novel epigenetic effect of ionizing radiation: the death-inducing effect. Cancer Res. 63(2):324–328.
  • Nakvasina MA, Lidokhova OV, Popova LI, Trubitsyna MS, Artyukhov VG. 2011. Second messengers cAMP, Ca2+, and NO modulate functional properties of human lymphocytes under conditions of exposure to UV light. Bull Exp Biol Med. 150(6):696–699.
  • Naziroglu M, Cig B, Dogan S, Uguz AC, Dilek S, Faouzi D. 2012. 2.45-Gz wireless devices induce oxidative stress and proliferation through cytosolic Ca(2)(+) influx in human leukemia cancer cells. Int J Radiat Biol. 88(6):449–456.
  • Naziroglu M, Yuksel M, Kose SA, Ozkaya MO. 2013. Recent reports of Wi-Fi and mobile phone-induced radiation on oxidative stress and reproductive signaling pathways in females and males. J Membr Biol. 246(12):869–875.
  • Oh SJ, Kim K, Lim CJ. 2015. Protective properties of ginsenoside Rb1 against UV-B radiation-induced oxidative stress in human dermal keratinocytes. Pharmazie. 70(6):381–387.
  • Orang AV, Petersen J, McKinnon RA, Michael MZ. 2019. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metabol. 23:98–126.
  • Osburn WO, Kensler TW. 2008. Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res. 659(1–2):31–39.
  • Ozpolat B, Benbrook DM. 2015. Targeting autophagy in cancer management - strategies and developments. Cancer Manag Res. 7:291–299.
  • Paraswani N, Thoh M, Bhilwade HN, Ghosh A. 2018. Early antioxidant responses via the concerted activation of NF-κB and Nrf2 characterize the gamma-radiation-induced adaptive response in quiescent human peripheral blood mononuclear cells. Mutat Res Genet Toxicol Environ Mutagen. 831:50–61.
  • Park HS, You GE, Yang KH, Kim JY, An S, Song J-Y, Lee S-J, Lim Y-K, Nam SY. 2015. Role of AKT and ERK pathways in controlling sensitivity to ionizing radiation and adaptive response induced by low-dose radiation in human immune cells. Eur J Cell Biol. 94(12):653–660.
  • Park JE, Seo YK, Yoon HH, Kim CW, Park JK, Jeon S. 2013. Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Neurochem Int. 62(4):418–424.
  • Park JY, Loh S, Cho EH, Choi HJ, Na TY, Nemeno JG, Lee JI, Yoon TJ, Choi IS, Lee M, et al. 2015. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice. Biochem Biophy Res Commun. 463(4):1064–1070.
  • Patra KC, Hay N. 2014. The pentose phosphate pathway and cancer. Trends Biochem Sci. 39(8):347–354.
  • Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. 2005. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 122(6):927–939.
  • Pelevina II, Aleshchenko AV, Antoshchina MM, Biryukov VA, Karyakin OB, Reva EV, Serebryanyi AM. 2015. The changes of properties of blood peripheral lymphocytes of donors and patients with prostate gland cancer: reaction of lymphocytes on irradiation in vitro. Radiats Biol Radioecol. 55(5):485–494. rus.
  • Persa E, Szatmari T, Safrany G, Lumniczky K. 2018. In vivo irradiation of mice induces activation of dendritic cells. IJMS. 19(8):2391.
  • Pietrocola F, Pol J, Vacchelli E, Baracco EE, Levesque S, Castoldi F, Maiuri MC, Madeo F, Kroemer G. 2016. Autophagy induction for the treatment of cancer. Autophagy. 12(10):1962–1964.
  • Pisoschi AM, Pop A. 2015. The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem. 97:55–74.
  • Qu Y, Zhang H, Zhao S, Hong J, Tang C. 2010. The effect on radioresistance of manganese superoxide dismutase in nasopharyngeal carcinoma. Oncol Rep. 23(4):1005–1011.
  • Ragy MM. 2015. Effect of exposure and withdrawal of 900-MHz-electromagnetic waves on brain, kidney and liver oxidative stress and some biochemical parameters in male rats. Electromagn Biol Med. 34(4):279–284.
  • Riballo E, Kühne M, Rief N, Doherty A, Smith GC, Recio Ma-J, Reis C, Dahm K, Fricke A, Krempler A, et al. 2004. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to γ-H2AX foci. Molecular Cell. 16(5):715–724.
  • Rizvi A, Pecaut MJ, Slater JM, Subramaniam S, Gridley DS. 2011. Low-dose gamma-rays modify CD4(+) T cell signalling response to simulated solar particle event protons in a mouse model. Int J Radiat Biol. 87(1):24–35.
  • Rodgers BE, Holmes KM. 2008. Radio-adaptive response to environmental exposures at Chernobyl. Dose-Response. 6(2): 209–221.
  • Saada HN, Said UZ, Mahdy EM, Elmezayen HE, Shedid SM. 2014. Fish oil omega-3 fatty acids reduce the severity of radiation-induced oxidative stress in the rat brain. Int J Radiat Biol. 90(12):1179–1183.
  • Saeed Y, Xie B, Xu J, Rehman A, Hong M, Hong Q, Deng Y. 2015. Glial U87 cells protect neuronal SH-SY5Y cells from indirect effect of radiation by reducing oxidative stress and apoptosis. Acta Biochim Biophys Sinica. 47(4):250–257.
  • Sample A, Zhao B, Wu C, Qian S, Shi X, Aplin A, He YY. 2018. The autophagy receptor adaptor p62 is Up‐regulated by UVA radiation in melanocytes and in melanoma cells. Photochem Photobiol. 94(3):432–437.
  • Sánchez-Wandelmer J, Kriegenburg F, Rohringer S, Schuschnig M, Gómez-Sánchez R, Zens B, Abreu S, Hardenberg R, Hollenstein D, Gao J, et al. 2017. Atg4 proteolytic activity can be inhibited by Atg1 phosphorylation. Nat Commun. 8:295.
  • Sasaki MS, Ejima Y, Tachibana A, Yamada T, Ishizaki K, Shimizu T, Nomura T, 2002. DNA damage response pathway in radioadaptive response. Mutat Res. 504(1–2):101–118.
  • Schaue D, Micewicz ED, Ratikan JA, Xie MW, Cheng G, McBride WH. 2015. Radiation and inflammation. Semin Radiat Oncol. 25(1):4–10.
  • Scherz-Shouval R, Elazar Z. 2011. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci. 36(1):30–38.
  • Scherz‐Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. 2007. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26(7):1749–1760.
  • Schnarr K, Carter TF, Gillis D, Webber C, Lemon JA, Dayes I, Dolling JA, Gulenchyn K, Boreham DR. 2015. Biological response of positron emission tomography scan exposure and adaptive response in humans. Dose-Response. 13(4):1559325815611904.
  • Schwarz A, Beissert S, Grosse-Heitmeyer K, Gunzer M, Bluestone JA, Grabbe S, Schwarz T. 2000. Evidence for functional relevance of CTLA-4 in ultraviolet-radiation-induced tolerance. J Immunol. 165(4):1824–1831.
  • Scott BR, Belinsky SA, Leng S, Lin Y, Wilder JA, Damiani LA. 2009. Radiation-stimulated epigenetic reprogramming of adaptive-response genes in the lung: an evolutionary gift for mounting adaptive protection against lung cancer. Dose-Response. 7(2):104–131.
  • Sergeeva VA, Ershova ES, Veiko NN, Malinovskaya EM, Kalyanov AA, Kameneva LV, Stukalov SV, Dolgikh OA, Konkova MS, Ermakov AV, et al. 2017. Low-dose ionizing radiation affects mesenchymal stem cells via extracellular oxidized cell-free DNA: a possible mediator of bystander effect and adaptive response. Oxid Med Cell Longev. 2017:1–22.
  • Shelke S, Das B. 2015. Dose response and adaptive response of non-homologous end joining repair genes and proteins in resting human peripheral blood mononuclear cells exposed to γ radiation. Mutagenesis. 30:365–379.
  • Silva V, Hilly O, Strenov Y, Tzabari C, Hauptman Y, Feinmesser R. 2016. Effect of cell phone-like electromagnetic radiation on primary human thyroid cells. Int J Radiat Biol. 92(2):107–115.
  • Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. 2008. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 4(2):176–184.
  • Singha I, Das SK. 2015. Grapevine fruit extract protects against radiation-induced oxidative stress and apoptosis in human lymphocyte. Indian J Exp Biol. 53(11):753–761.
  • Speranskii A, Kostyuk S, Kalashnikova E, Veiko N. 2016. Enrichment of extracellular DNA from the cultivation medium of human peripheral blood mononuclears with genomic CpG rich fragments results in increased cell production of IL-6 and TNF-a via activation of the NF-kB signaling pathway. Biomed Khim. 62(3):331–340.
  • Storch K, Dickreuter E, Artati A, Adamski J, Cordes N. 2016. BEMER electromagnetic field therapy reduces cancer cell radioresistance by enhanced ROS formation and induced DNA damage. PLoS One. 11(12):e0167931.
  • Storz P, Döppler H, Toker A. 2004. Protein kinase Cδ selectively regulates protein kinase D-dependent activation of NF-κB in oxidative stress signaling. Mol Cell Biol. 24(7):2614–2626.
  • Szumiel I. 2015. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria. Int J Radiat Biol. 91(1):1–12.
  • Tam SY, Wu VWC, Law H. 2017. Influence of autophagy on the efficacy of radiotherapy. Radiat Oncol. 12(1):57.
  • Tichy A, Zaskodova D, Rezacova M, Vavrova J, Vokurkova D, Pejchal J, Vilasova Z, Cerman J, Osterreicher J. 2007. Gamma-radiation-induced ATM-dependent signalling in human T-lymphocyte leukemic cells, MOLT-4. Acta Biochim Pol. 54(2):281–287.
  • Tiwari P, Kumar A, Balakrishnan S, Kushwaha HS, Mishra KP. 2009. Radiation-induced micronucleus formation and DNA damage in human lymphocytes and their prevention by antioxidant thiols. Mutat Res. 676(1–2):62–68.
  • Uckun FM, Schieven GL, Tuel-Ahlgren LM, Dibirdik I, Myers DE, Ledbetter JA, Song CW. 1993. Tyrosine phosphorylation is a mandatory proximal step in radiation-induced activation of the protein kinase C signaling pathway in human B-lymphocyte precursors. Proc Natl Acad Sci USA. 90(1):252–256.
  • Van Hoeck A, Horemans N, Van Hees M, Nauts R, Knapen D, Vandenhove H, Blust R. 2015. Characterizing dose response relationships: chronic gamma radiation in Lemna minor induces oxidative stress and altered polyploidy level. J Environ Radioact. 150:195–202.
  • Vorob’eva N, Antonenko AV, Osipov AN. 2011. Particularities of blood lymphocyte response to irradiation in vitro in breast cancer patients. Radiats Biol Radioecol. 51(4):451–456. rus.
  • Wagner W, Ciszewski WM, Kania KD. 2015. L-and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation. Cell Commun Signal. 13(1):36.
  • Wang B, Li B, Dai Z, Ren S, Bai M, Wang Z, Li Z, Lin S, Wang Z, Huang N, et al. 2014. Low-dose splenic radiation inhibits liver tumor development of rats through functional changes in CD4 + CD25 + Treg cells. Int J Biochem Cell Biol. 55:98–108.
  • Wang S-F, Wu M-Y, Cai C-Z, Li M, Lu J-H. 2016. Autophagy modulators from traditional Chinese medicine: mechanisms and therapeutic potentials for cancer and neurodegenerative diseases. J Ethnopharmacol. 194:861–876.
  • Wang G, Wang JJ, Yin PH, Xu K, Wang YZ, Shi F, Gao J, Fu XL. 2019a. New strategies for targeting glucose metabolism–mediated acidosis for colorectal cancer therapy. J Cell Physiol. 234(1):348–368.
  • Wang W, Chapman NM, Zhang B, Li M, Fan M, Laribee RN, Zaidi MR, Pfeffer LM, Chi H, Wu ZH. 2019b. Upregulation of PD-L1 via HMGB1-activated IRF3 and NF-kappaB contributes to UV radiation-induced immune suppression. Cancer Res. 79(11):2909–2922.
  • Wang X, Wei L, Cramer JM, Leibowitz BJ, Judge C, Epperly M, Greenberger J, Wang F, Li L, Stelzner MG, et al. 2015. Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation. Sci Rep. 5(1):8566.
  • Wu H, Lin J, Liu P, Huang Z, Zhao P, Jin H, Ma J, Wen L, Gu N. 2016. Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs. Biomaterials. 101:1–9.
  • Xie Y, Zhang J, Ye S, He M, Ren R, Yuan D, Shao C. 2012. SirT1 regulates radiosensitivity of hepatoma cells differently under normoxic and hypoxic conditions. Cancer Sci. 103(7):1238–1244.
  • Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. 2016. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med. 35(2):186–202.
  • Yan S-X, Luo X-M, Zhou S-H, Bao Y-Y, Fan J, Lu Z-J, Liao X-B, Huang Y-P, Wu T-T, Wang Q-Y. 2013. Effect of antisense oligodeoxynucleotides glucose transporter-1 on enhancement of radiosensitivity of laryngeal carcinoma. Int J Med Sci. 10(10):1375–1386.
  • Yang J, Yu Y, Hamrick HE, Duerksen-Hughes PJ. 2003. ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis. 24(10):1571–1580.
  • Yang LL, Zhou Y, Tian WD, Li HJ, Li KC, Miao X, An GZ, Wang XW, Guo GZ, Ding GR. 2016. Electromagnetic pulse activated brain microglia via the p38 MAPK pathway. Neurotoxicology. 52:144–149.
  • Yanjun W, Hui-Fang L, Bi-Xiang Z, Xiao-Ping C. 2015. Cytoplasmic translocation of high mobility Group Box 1 (hmgb1) in adjacent noncancerous tissue of human Hepatocellular Carcinoma (hcc) promotes malignancy and predict poor prognosis. Off J Int Hepatol Pancreatol Biliary Assoc. 17(159).
  • Yoshida GJ. 2015. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 34:111.
  • Yu Z-Q, Ni T, Hong B, Wang H-Y, Jiang F-J, Zou S, Chen Y, Zheng X-L, Klionsky D J, Liang Y, et al. 2012. Dual roles of Atg8− PE deconjugation by Atg4 in autophagy. Autophagy. 8(6):883–892.
  • Yumoto H, Hirao K, Tominaga T, Bando N, Takahashi K, Matsuo T. 2015. Electromagnetic wave irradiation promotes osteoblastic cell proliferation and up-regulates growth factors via activation of the ERK1/2 and p38 MAPK pathways. Cell Physiol Biochem. 35(2):601–615.
  • Zhang H, Hou X, Cai H, Zhuang X. 2017. Effects of microwave ablation on T-cell subsets and cytokines of patients with hepatocellular carcinoma. Minim Invasive Ther Allied Technol. 26(4):207–211.
  • Zhang JC, Chen WD, Alvarez JB, Jia K, Shi L, Wang Q, Zou N, He K, Zhu H. 2018. Cancer immune checkpoint blockade therapy and its associated autoimmune cardiotoxicity. Acta Pharmacol Sin. 39(11):1693–1698.
  • Zhang L, Li J, Ouyang L, Liu B, Cheng Y. 2016. Unraveling the roles of Atg4 proteases from autophagy modulation to targeted cancer therapy. Cancer Lett. 373(1):19–26.
  • Zheng X, Jin X, Liu X, Liu B, Li P, Ye F, Zhao T, Chen W, Li Q. 2020. Inhibition of endoplasmic reticulum stress-induced autophagy promotes the killing effect of X-rays on sarcoma in mice. Biochem Biophys Res Commun. 522:612–617.
  • Zhu J, Yu M, Chen L, Kong P, Li L, Ma G, Ge H, Cui Y, Li Z, Pan H, et al. 2018. Enhanced antitumor efficacy through microwave ablation in combination with immune checkpoints blockade in breast cancer: a pre-clinical study in a murine model. Diagn Interv Imaging. 99(3):135–142.
  • Zois CE, Koukourakis MI. 2009. Radiation-induced autophagy in normal and cancer cells: towards novel cytoprotection and radio-sensitization policies? Autophagy. 5(4):442–450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.