269
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Nonlinearities in the cellular response to ionizing radiation and the role of p53 therein

&
Pages 1088-1098 | Received 27 Aug 2019, Accepted 26 Dec 2019, Published online: 05 Feb 2020

References

  • Asaithamby A, Chen DJ. 2009. Cellular responses to DNA double-strand breaks after low-dose γ-irradiation. Nucleic Acids Res. 37(12):3912–3923.
  • Bensaad K, Vousden KH. 2005. Savior and slayer: the two faces of p53. Nat Med. 11(12):1278–1279.
  • Biaglow JE, Miller RA. 2005. The thioredoxin reductase/thioredoxin system: novel redox targets for cancer therapy. Cancer Biol Ther. 4:6–13.
  • Blackford AN, Jackson SP. 2017. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 66(6):801–817.
  • Brady CA, Attardi LD. 2010. p53 at a glance. J Cell Sci. 123(15):2527–2532.
  • Brown JM, Attardi LD. 2005. The role of apoptosis in cancer development and treatment response. Nat Rev Cancer. 5(3):231–237.
  • Brown JM, Wouters BG. 1999. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res. 59(7):1391–1399.
  • Budanov AV. 2014. The role of tumor suppressor p53 in the antioxidant defense and metabolism. Subcell Biochem. 85:337–358.
  • Cantoni O, Murray D, Meyn RE. 1986. Effect of 3-aminobenzamide on DNA strand break rejoining and cytotoxicity in CHO cells treated with hydrogen peroxide. Biochim Biophys Acta. 867(3):135–143.
  • Cantoni O, Murray D, Meyn RE. 1987. Induction and repair of DNA single-strand breaks in EM9 mutant CHO cells treated with hydrogen peroxide. Chem Biol Interact. 63(1):29–38.
  • Chakradeo S, Elmore LW, Gewirtz DA. 2016. Is senescence reversible? CDT. 17(4):460–466.
  • Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K, Roninson IB. 1999. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 59(15):3761–3767.
  • Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J, Roninson IB. 1999. Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene. 15:4808–4818.
  • Chen J, Niu N, Zhang J, Qi L, Shen W, Donkena KV, Feng Z, Liu J. 2019. Polyploid giant cancer cells (PGCCs): the evil roots of cancer. CCDT. 19(5):360–367.
  • Chen W, Jiang T, Wang H, Tao S, Lau A, Fang D, Zhang DD. 2012. Does Nrf2 contribute to p53-mediated control of cell survival and death? Antioxid Redox Signal. 17(12):1670–1675.
  • Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, Zhang DD. 2009. Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell. 34(6):663–673.
  • Cheng Q, Chen J. 2010. Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle. 9(3):472–478.
  • Coppé JP, Desprez PY, Krtolica A, Campisi J. 2010. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol Mech Dis. 5(1):99–118.
  • Cosentino C, Grieco D, Costanzo V. 2011. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J. 30(3):546–555.
  • Crescenzi E, Palumbo G, de Boer J, Brady HJ. 2008. Ataxia telangiectasia mutated and p21CIP1 modulate cell survival of drug-induced senescent tumor cells: implications for chemotherapy. Clin Cancer Res. 14(6):1877–1887.
  • Donald SP, Sun XY, Hu CA, Yu J, Mei JM, Valle D, Phang JM. 2001. Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res. 61(5):1810–1815.
  • Du Y, Villeneuve NF, Wang XJ, Sun Z, Chen W, Li J, Lou H, Wong PK, Zhang DD. 2008. Oridonin confers protection against arsenic-induced toxicity through activation of the Nrf2-mediated defensive response. Environ Health Perspect. 116(9):1154–1161.
  • Dutto I, Tillhon M, Cazzalini O, Stivala LA, Prosperi E. 2015. Biology of the cell cycle inhibitor p21(CDKN1A): molecular mechanisms and relevance in chemical toxicology. Arch Toxicol. 89(2):155–178.
  • Enns L, Barley RD, Paterson MC, Mirzayans R. 1998. Radiosensitivity in ataxia telangiectasia fibroblasts is not associated with deregulated apoptosis. Radiat Res. 150(1):11–16.
  • Erenpreisa J, Cragg M S. 2001. Mitotic death: a mechanism of survival? A review. Cancer Cell Int. 1(1):1.
  • Gaiddon C, Moorthy NC, Prives C. 1999. Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J. 18(20):5609–5621.
  • Gudkov AV, Komarova EA. 2003. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer. 3(2):117–129.
  • Hasty P, Christy BA. 2013. p53 as an intervention target for cancer and aging. Pathobiol Aging Age Relat Dis. 3:22702.
  • Held KD. 1997. Radiation-induced apoptosis and its relationship to loss of clonogenic survival. Apoptosis. 2(3):265–282.
  • Inoue T, Kato K, Kato H, Asanoma K, Kuboyama A, Ueoka Y, Yamaguchi S, Ohgami T, Wake N. 2009. Level of reactive oxygen species induced by p21Waf1/CIP1 is critical for the determination of cell fate. Cancer Sci. 100(7):1275–1283.
  • Jayaraman L, Murthy KG, Zhu C, Curran T, Xanthoudakis S, Prives C. 1997. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev. 11(5):558–570.
  • Joerger AC, Fersht AR. 2016. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem. 85(1):375–404.
  • Kohn KW, Erickson LC, Ewig RA, Friedman CA. 1976. Fractionation of DNA from mammalian cells by alkaline elution. Biochemistry. 15(21):4629–4637.
  • Kotsinas A, Aggarwal V, Tan EJ, Levy B, Gorgoulis VG. 2012. PIG3: a novel link between oxidative stress and DNA damage response in cancer. Cancer Lett. 327(1–2):97–102.
  • Krueger SA, Collis SJ, Joiner MC, Wilson GD, Marples B. 2007. Transition in survival from low-dose hyper-radiosensitivity to increased radioresistance is independent of activation of ATM Ser 1981 activity. Int J Radiat Oncol Biol Phys. 69(4):1262–1271.
  • Le XC, Xing JZ, Lee J, Leadon SA, Weinfeld M. 1998. Inducible repair of thymine glycol detected by an ultrasensitive assay for DNA damage. Science. 280(5366):1066–1069.
  • Li B, Shang ZF, Yin JJ, Xu QZ, Liu XD, Wang Y, Zhang SM, Guan H, Zhou PK. 2013. PIG3 functions in DNA damage response through regulating DNA-PKcs homeostasis. Int J Biol Sci. 9(4):425–434.
  • Liu Z, Lu H, Shi H, Du Y, Yu J, Gu S, Chen X, Liu KJ, Hu CA. 2005. PUMA overexpression induces reactive oxygen species generation and proteasome-mediated stathmin degradation in colorectal cancer cells. Cancer Res. 65(5):1647–1654.
  • Lohr K, Moritz C, Contente A, Dobbelstein M. 2003. p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem. 278:32507–32516.
  • Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA. 2003. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol Cell Biol. 23(23):8576–8585.
  • Marples B, Collis SJ. 2008. Low-dose hyper-radiosensitivity: past, present, and future. Int J Radiat Oncol Biol Phys. 70(5):1310–1318.
  • Meyn RE, Milas L, Ang KK. 2009. The role of apoptosis in radiation oncology. Int J Radiat Biol. 85(2):107–115.
  • Mills MD, Meyn RE. 1981. Effects of hyperthermia on repair of radiation-induced DNA strand breaks. Radiat Res. 87(2):314–328.
  • Mirzayans R, Andrais B, Kumar P, Murray D. 2017. Significance of wild-type p53 signaling in down-regulating apoptosis in response to chemical genotoxic agents: impact on chemotherapy outcome. Int J Mol Sci. 18(5):928.
  • Mirzayans R, Andrais B, Murray D. 2017. Impact of premature senescence on radiosensitivity measured by high throughput cell-based assays. Int J Mol Sci. 18(7):1460.
  • Mirzayans R, Andrais B, Murray D. 2018. Roles of polyploid/multinucleated giant cancer cells in metastasis and disease relapse following anticancer treatment. Cancers. 10(4):118.
  • Mirzayans R, Andrais B, Scott A, Murray D. 2012. New insights into p53 signaling and cancer-cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol. 2012:1–16.
  • Mirzayans R, Andrais B, Scott A, Wang YW, Kumar P, Murray D. 2017. Multinucleated giant cancer cells produced in response to ionizing radiation retain viability and replicate their genome. Int J Mol Sci. 18(2):360.
  • Mirzayans R, Andrais B, Scott A, Wang YW, Murray D. 2013. Ionizing radiation-induced responses in human cells with differing TP53 status. Int J Mol Sci. 14(11):22409–22435.
  • Mirzayans R, Murray D. 2009. Cellular senescence: implications for cancer therapy. New York, NY: Nova Science Publishers, Inc.
  • Mirzayans R, Pollock S, Scott A, Enns L, Andrais B, Murray D. 2004. Relationship between the radiosensitizing effect of wortmannin, DNA double-strand break rejoining, and p21WAF1 induction in human normal and tumor-derived cells. Mol Carcinog. 39(3):164–172.
  • Mirzayans R, Scott A, Pollock S, Andrais B, Murray D. 2005. Induction of accelerated senescence by γ radiation in human solid tumor-derived cell lines expressing wild-type TP53. Radiat Res. 163(1):53–62.
  • Murray D, Meyn RE. 1987. Differential repair of γ-ray-induced DNA strand breaks by various cellular subpopulations of mouse jejunal epithelium and bone marrow in vivo. Radiat Res. 109(1):153–164.
  • Murray D, Mirzayans R, McBride WH. 2018. Defenses against pro-oxidant forces – maintenance of cellular and genomic integrity and longevity. Radiat Res. 190(4):331–349.
  • Murray D, Weinfeld M. 2010. Radiation biology of targeted radiotherapy. In: Reilly RM, editor. Monoclonal antibody and peptide-targeted radiotherapy of malignancies. Hoboken, NJ: Wiley; p. 419–471.
  • Offer H, Erez N, Zurer I, Tang X, Milyavsky M, Goldfinger N, Rotter V. 2002. The onset of p53-dependent DNA repair or apoptosis is determined by the level of accumulated damaged DNA. Carcinogenesis. 23(6):1025–1032.
  • Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. 1997. A model for p53-induced apoptosis. Nature. 389(6648):300–305.
  • Puck TT, Marcus PI. 1956. Action of X-rays on mammalian cells. J Exp Med. 103(5):653–666.
  • Rhee SG, Bae SH. 2015. The antioxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1. Free Radic Biol Med. 88(Pt B):205–211.
  • Riley T, Sontag E, Chen P, Levine A. 2008. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 9(5):402–412.
  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 273(10):5858–5868.
  • Roninson IB, Broude EV, Chang BD. 2001. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat. 4(5):303–313.
  • Rothkamm K, Löbrich M. 2003. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA. 100(9):5057–5062.
  • Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. 2005. The antioxidant function of the p53 tumor suppressor. Nat Med. 11(12):1306–1313.
  • Saussez S, Kiss R. 2006. Galectin-7. Cell Mol Life Sci. 63(6):686–697.
  • Sengupta S, Harris CC. 2005. p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol. 6(1):44–55.
  • Spitz DR, Azzam EI, Li JJ, Gius D. 2004. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev. 23(3/4):311–322.
  • Steckley D, Karajgikar M, Dale LB, Fuerth B, Swan P, Drummond-Main C, Poulter MO, Ferguson SS, Strasser A, Cregan SP. 2007. Puma is a dominant regulator of oxidative stress induced Bax activation and neuronal apoptosis. J Neurosci. 27(47):12989–12999.
  • Stephens LC, Ang KK, Schultheiss TE, Milas L, Meyn RE. 1991. Apoptosis in irradiated murine tumors. Radiat Res. 127(3):308–316.
  • Story MD, Voehringer DW, Malone CG, Hobbs ML, Meyn RE. 1994. Radiation-induced apoptosis in sensitive and resistant cells isolated from a mouse lymphoma. Int J Radiat Biol. 66(6):659–668.
  • Suzuki T, Yamamoto M. 2017. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. J Biol Chem. 292(41):16817–16824.
  • Tell G, Quadrifoglio F, Tiribelli C, Kelley MR. 2009. The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal. 11(3):601–620.
  • Toledo F, Wahl GM. 2007. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol. 39(7–8):1476–1482.
  • Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T, Yamaoka Y, Yodoi J, Nikaido T. 1999. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem. 274(50):35809–35815.
  • van Ankeren SC, Murray D, Meyn RE. 1988. Induction and rejoining of γ-ray-induced DNA single- and double-strand breaks in Chinese hamster AA8 cells and in two radiosensitive clones. Radiat Res. 116(3):511–525.
  • Vousden KH, Prives C. 2009. Blinded by the light: the growing complexity of p53. Cell. 137(3):413–431.
  • Waldman T, Kinzler KW, Vogelstein B. 1995. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55(22):5187–5190.
  • Wasielewski M, Elstrodt F, Klijn JG, Berns EM, Schutte M. 2006. Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines. Breast Cancer Res Treat. 99(1):97–101.
  • Wheeler KT, Nelson GB. 1987. Saturation of a DNA repair process in dividing and nondividing mammalian cells. Radiat Res. 109(1):109–117.
  • Williams AB, Schumacher B. 2016. p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med. 6(5):a026070.
  • Yang J, Zhao X, Tang M, Li L, Lei Y, Cheng P, Guo W, Zheng Y, Wang W, Luo N. 2017. The role of ROS and subsequent DNA-damage response in PUMA-induced apoptosis of ovarian cancer cells. Oncotarget. 8:23492–23506.
  • Yee YH, Chong SJ, Pervaiz S. 2016. The anti-oxidant and pro-oxidant dichotomy of Bcl-2. Biol Chem. 397(7):585–593.
  • Zaky A, Busso C, Izumi T, Chattopadhyay R, Bassiouny A, Mitra S, Bhakat KK. 2008. Regulation of the human AP-endonuclease (APE1/Ref-1) expression by the tumor suppressor p53 in response to DNA damage. Nucleic Acids Res. 36(5):1555–1566.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.