381
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Mitochondrial reactive oxygen species: the effects of mitochondrial ascorbic acid vs untargeted and mitochondria-targeted antioxidants

, &
Pages 1055-1062 | Received 18 Sep 2019, Accepted 07 Jan 2020, Published online: 06 Feb 2020

References

  • Aliev G, Obrenovich M, Reddy V, Shenk J, Moreira P, Nunomura A, Zhu X, Smith M, Perry G. 2008. Antioxidant therapy in Alzheimer’s disease: theory and practice. Mini Rev Med Chem. 8(13):1395–1406.
  • Angelova PR, Abramov AY. 2016. Functional role of mitochondrial reactive oxygen species in physiology. Free Radic Biol Med. 100:81–85.
  • Azzolini C, Fiorani M, Cerioni L, Guidarelli A, Cantoni O. 2013. Sodium-dependent transport of ascorbic acid in U937 cell mitochondria. IUBMB Life. 65(2):149–153.
  • Banhegyi G, Benedetti A, Margittai E, Marcolongo P, Fulceri R, Németh CE, Szarka A. 2014. Subcellular compartmentation of ascorbate and its variation in disease states. Biochim Biophys Acta. 1843(9):1909–1916.
  • Baulies A, Montero J, Matías N, Insausti N, Terrones O, Basañez G, Vallejo C, Conde de La Rosa L, Martinez L, et al. 2018. The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial gsh despite cholesterol loading. Redox Biol. 14:164–177.
  • Bolisetty S, Jaimes EA. 2013. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci. 14(3):6306–6344.
  • Braakhuis AJ, Nagulan R, Somerville V. 2018. The effect of Mitoq on aging-related biomarkers: a systematic review and meta-analysis. Oxid Med Cell Longev. 2018:1–12.
  • Burzle M, Hediger MA. 2012. Functional and physiological role of vitamin C transporters. Curr Top Membr. 70:357–375.
  • Burzle M, Suzuki Y, Ackermann D, Miyazaki H, Maeda N, Clémençon B, Burrier R, Hediger MA. 2013. The sodium-dependent ascorbic acid transporter family Slc23. Mol Aspects Med. 34(2–3):436–454.
  • Candas D, Li JJ. 2014. MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal. 20(10):1599–1617.
  • Cantoni O, Guidarelli A, Fiorani M. 2018. Mitochondrial uptake and accumulation of vitamin C: what can we learn from cell culture studies? Antioxid Redox Signal. 29(15):1502–1515.
  • Casas AI, Dao VTV, Daiber A, Maghzal GJ, Di Lisa F, Kaludercic N, Leach S, Cuadrado A, Jaquet V, Seredenina T, et al. 2015. Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications. Antioxid Redox Signal. 23(14):1171–1185.
  • Cenini G, Voos W. 2019. Mitochondria as potential targets in alzheimer disease therapy: an update. Front Pharmacol. 10:902.
  • Chimento A, De Amicis F, Sinicropi MS, Puoci F, Casaburi I, Saturnino C, Pezzi V. 2019. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int J Mol Sci. 20(6)1381.
  • Corpe CP, Eck P, Wang J, Al-Hasani H, Levine M. 2013. Intestinal dehydroascorbic acid (DHA) transport mediated by the facilitative sugar transporters, Glut2 and Glut8. J Biol Chem. 288(13):9092–9101.
  • Corpe CP, Tu H, Eck P, Wang J, Faulhaber-Walter R, Schnermann J, Margolis S, Padayatty S, Sun H, Wang Y, et al. 2010. Vitamin C transporter Slc23a1 links renal reabsorption, Vitamin C tissue accumulation, and perinatal survival in mice. J Clin Invest. 120(4):1069–1083.
  • Corti A, Casini AF, Pompella A. 2010. Cellular pathways for transport and efflux of ascorbate and dehydroascorbate. Arch Biochem Biophys. 500(2):107–115.
  • De Araujo DP, Lobato RF, Cavalcanti JR, Sampaio LR, Araújo PV, Silva MC, Neves KR, Fonteles MM, Sousa FC, Vasconcelos SM. 2011. The contributions of antioxidant activity of lipoic acid in reducing neurogenerative progression of parkinson’s disease: a review. Int J Neurosci. 121(2):51–57.
  • Dumont M, Lin MT, Beal MF. 2010. Mitochondria and antioxidant targeted therapeutic strategies for Alzheimer’s disease. J Alzheimers Dis . 20(s2):S633–S43.
  • Durazzo A, Lucarini M, Souto EB, Cicala C, Caiazzo E, Izzo AA, Novellino E, Santini A. 2019. Polyphenols: a concise overview on the chemistry, occurrence, and human health. Phytother Res. 33(9):2221–2243.
  • Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JCB, Kowaltowski AJ, Sluse FE, Souza-Pinto NC, Vercesi AE. 2013. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal. 18(16):2029–2074.
  • Finichiu PG, Larsen DS, Evans C, Larsen L, Bright TP, Robb EL, Trnka J, Prime TA, James AM, Smith RA, et al. 2015. A mitochondria-targeted derivative of ascorbate: Mitoc. Free Radic Biol Med. 89:668–678.
  • Fiorani M, Azzolini C, Cerioni L, Scotti M, Guidarelli A, Ciacci C, Cantoni O. 2015. The mitochondrial transporter of ascorbic acid functions with high affinity in the presence of low millimolar concentrations of sodium and in the absence of calcium and magnesium. Biochim Biophys Acta. 1848(6):1393–1401.
  • Fiorani M, Azzolini C, Guidarelli A, Cerioni L, Cantoni O. 2014. A novel biological role of dehydroascorbic acid: inhibition of Na+-dependent transport of ascorbic acid. Pharmacol Res. 84:12–17.
  • Fiorani M, Azzolini C, Guidarelli A, Cerioni L, Scotti M, Cantoni O. 2015. Intracellular dehydroascorbic acid inhibits SVCT2-dependent transport of ascorbic acid in mitochondria. Pharmacol Res. 99:289–295.
  • Fiorani M, Guidarelli A, Blasa M, Azzolini C, Candiracci M, Piatti E, Cantoni O. 2010. Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J Nutr Biochem. 21(5):397–404.
  • Fujimoto Y, Matsui M, Fujita T. 1982. The accumulation of ascorbic acid and iron in rat liver mitochondria after lipid peroxidation. Jpn J Pharmacol. 32(2):397–399.
  • Gane EJ, Weilert F, Orr DW, Keogh GF, Gibson M, Lockhart MM, Frampton CM, Taylor KM, Smith RA, Murphy MP, et al. 2010. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase Ii study of Hepatitis C patients. Liver Int. 30(7):1019–1026.
  • Ghezzi P, Marcucci F, Schmidt HHHW. 2016. The oxidative stress theory of disease: levels of evidence and epistemological aspects. Br J Pharmacol. 174(12):1784–1796.
  • Ghosh N, Ghosh R, Mandal SC. 2011. Antioxidant protection: a promising therapeutic intervention in neurodegenerative disease. Free Radic Res. 45(8):888–905.
  • Granger M, Eck P. 2018. Dietary Vitamin C in human health. Adv Food Nutr Res. 83:281–310.
  • Guidarelli A, Carloni S, Balduini W, Fiorani M, Cantoni O. 2016. Mitochondrial Ascorbic Acid Prevents Mitochondrial O2– formation, an event critical for U937 cell apoptosis induced by arsenite through both autophagic-dependent and independent mechanisms. BiofactorsBiofactors. 42(2):190–200.
  • Guidarelli A, Fiorani M, Azzolini C, Cerioni L, Scotti M, Cantoni O. 2015. U937 cell apoptosis induced by arsenite is prevented by low concentrations of mitochondrial ascorbic acid with hardly any effect mediated by the cytosolic fraction of the vitamin. Biofactors. 41(2):101–110.
  • Guidarelli A, Fiorani M, Cerioni L, Scotti M, Cantoni O. 2017. Arsenite induces DNA damage via mitochondrial ROS and induction of mitochondrial permeability transition. Biofactors. 43(5):673–684.
  • Hamanaka RB, Chandel NS. 2010. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci. 35(9):505–513.
  • Handy DE, Loscalzo J. 2012. Redox regulation of mitochondrial function. Antioxid Redox Signal. 16(11):1323–1367.
  • Indo HP, Hawkins CL, Nakanishi I, Matsumoto KI, Matsui H, Suenaga S, Davies MJ, Clair DK, Ozawa T, Majima HJ. 2017. Role of mitochondrial reactive oxygen species in the activation of cellular signals, molecules, and function. Handb Exp Pharmacol. 240:439–456.
  • Ingebretsen OC, Normann PT. 1982. Transport of ascorbate into guinea pig liver mitochondria. Biochim Biophys Acta. 684(1):21–26.
  • Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, Kanthasamy AG. 2014. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim Biophys Acta. 1842(8):1282–1294.
  • Kc S, Carcamo JM, Golde DW. 2005. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. Faseb J. 19(12):1657–1667.
  • Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky AV, Melnikova NV, Kaprin AD, et al. 2016. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 7(29):44879–44905.
  • Kumar A, Singh A. 2015. A review on mitochondrial restorative mechanism of antioxidants in Alzheimer’s disease and other neurological conditions. Front Pharmacol. 6:206.
  • Lane DJ, Lawen A. 2009. Ascorbate and plasma membrane electron transport-enzymes vs efflux. Free Radic Biol Med. 47(5):485–495.
  • Lash LH. 2006. Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chem Biol Interact. 163(1–2):54–67.
  • Lee YC, Huang HY, Chang CJ, Cheng CH, Chen YT. 2010. Mitochondrial Glut10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome. Hum Mol Genet. 19(19):3721–3733.
  • Li X, Cobb CE, Hill KE, Burk RF, May JM. 2001. Mitochondrial uptake and recycling of ascorbic acid. Arch Biochem Biophys. 387(1):143–153.
  • Li X, Cobb CE, May JM. 2002. Mitochondrial recycling of ascorbic acid from dehydroascorbic acid: dependence on the electron transport chain. Arch Biochem Biophys. 403(1):103–110.
  • Liang WJ, Johnson D, Jarvis SM. 2001. Vitamin C transport systems of mammalian cells. Mol Membr Biol. 18(1):87–95.
  • Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP. 1969. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature. 222(5198):1076–1078.
  • Lindblad M, Tveden-Nyborg P, Lykkesfeldt J. 2013. Regulation of Vitamin C homeostasis during deficiency. Nutrients. 5(8):2860–2879.
  • Linster CL, Van Schaftingen E. 2007. Vitamin C. biosynthesis, recycling and degradation in mammals. Febs J. 274(1):1–22.
  • Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, Zuo L. 2018. Role of ros and nutritional antioxidants in human diseases. Front Physiol. 9:477.
  • Loscalzo J. 2008. Membrane redox state and apoptosis: death by peroxide. Cell Metab. 8(3):182–183.
  • Lu J, Holmgren A. 2014. The thioredoxin antioxidant system. Free Radic Biol Med. 66:75–87.
  • Mailloux RJ. 2018. Mitochondrial antioxidants and the maintenance of cellular hydrogen peroxide levels. Oxid Med Cell Longev. 2018:1–10.
  • Maiorino M, Conrad M, Ursini F. 2018. Gpx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxid Redox Signal. 29(1):61–74.
  • Mandl J, Szarka A, Banhegyi G. 2009. Vitamin C: Update on physiology and pharmacology. Br J Pharmacol. 157(7):1097–1110.
  • Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD. 2016. The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a mini review. Oxid Med Cell Longev. 2016:1–15.
  • Mardones L, Zúñiga FA, Villagrán M, Sotomayor K, Mendoza P, Escobar D, González M, Ormazabal V, Maldonado M, Oñate G, et al. 2012. Essential role of intracellular glutathione in controlling ascorbic acid transporter expression and function in rat hepatocytes and hepatoma cells. Free Radic Biol Med. 52(9):1874–1887.
  • May JM, Li L, Qu ZC, Cobb CE. 2007. Mitochondrial recycling of ascorbic acid as a mechanism for regenerating cellular ascorbate. Biofactors. 30(1):35–48.
  • May JM, Mendiratta S, Hill KE, Burk RF. 1997. Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J Biol Chem. 272(36):22607–22610.
  • Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z, St. Clair D, Batinic-Haberle I. 2012. Manganese superoxide dismutase, mnsod and its mimics. Biochim Biophys Acta. 1822(5):794–814.
  • Montel-Hagen A, Kinet S, Manel N, Mongellaz C, Prohaska R, Battini JL, Delaunay J, Sitbon M, Taylor N. 2008. Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize Vitamin C. Cell. 132(6):1039–1048.
  • Munoz-Montesino C, Roa FJ, Peña E, González M, Sotomayor K, Inostroza E, Muñoz CA, González I, Maldonado M, Soliz C, et al. 2014. Mitochondrial ascorbic acid transport is mediated by a low-affinity form of the sodium-coupled ascorbic acid transporter-2. Free Radic Biol Med. 70:241–254.
  • Munro D, Treberg JR. 2017. A radical shift in perspective: mitochondria as regulators of reactive oxygen species. J Exp Biol. 220(7):1170–1180.
  • Murphy MP. 2012. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal. 16(6):476–495.
  • Nualart F. 2014. Vitamin C transporters, recycling and the bystander effect in the nervous system: Svct2 versus gluts. J Stem Cell Res Ther. 04(05):209.
  • Nualart FJ, Rivas CI, Montecinos VP, Godoy AS, Guaiquil VH, Golde DW, Vera JC. 2003. Recycling of Vitamin C by a bystander effect. J Biol Chem. 278(12):10128–10133.
  • Okado-Matsumoto A, Fridovich I. 2001. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem. 276(42):38388–38393.
  • Oyewole AO, Birch-Machin MA. 2015. Mitochondria-targeted antioxidants. Faseb J. 29(12):4766–4771.
  • Pacher P, Beckman JS, Liaudet L. 2007. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 87(1):315–424.
  • Padayatty SJ, Levine M. 2016. Vitamin C: the known and the unknown and goldilocks. Oral Dis. 22(6):463–493.
  • Paradies G, Paradies V, Ruggiero FM, Petrosillo G. 2015. Protective role of melatonin in mitochondrial dysfunction and related disorders. Arch Toxicol. 89(6):923–939.
  • Pena E, Roa FJ, Inostroza E, Sotomayor K, González M, Gutierrez-Castro FA, Maurin M, Sweet K, Labrousse C, Gatica M, et al. 2019. Increased expression of mitochondrial sodium-coupled ascorbic acid transporter-2 (MitSVCT2) as a central feature in breast cancer. Free Radic Biol Med. 135:283–292.
  • Radi R. 2018. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc Natl Acad Sci Usa. 115(23):5839–5848.
  • Ramanathan K, Shila S, Kumaran S, Panneerselvam C. 2003. Ascorbic acid and alpha-tocopherol as potent modulators on arsenic induced toxicity in mitochondria. J Nutr Biochem. 14(7):416–420.
  • Reiter R, Tan D, Rosales-Corral S, Galano A, Zhou X, Xu B. 2018. Mitochondria: central organelles for Melatonin’s antioxidant and anti-aging actions. Molecules. 23(2):509.
  • Ribas V, Garcia-Ruiz C, Fernandez-Checa JC. 2014. Glutathione and mitochondria. Front Pharmacol. 5:151.
  • Rigoulet M, Yoboue ED, Devin A. 2011. Mitochondrial ROS generation and its regulation: mechanisms involved in H2O2 signaling. Antioxid Redox Signal. 14(3):459–468.
  • Rivas CI, Zúñiga FA, Salas-Burgos A, Mardones L, Ormazabal V, Vera JC. 2008. Vitamin C transporters. J Physiol Biochem. 64(4):357–375.
  • Rocha M, Esplugues J, Hernandez-Mijares A, Victor V. 2009. Mitochondrial-targeted antioxidants and oxidative stress: a proteomic prospective study. Curr Pharm Des. 15(26):3052–3062.
  • Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M. 1997. Glucose transporter isoforms Glut1 and Glut3 transport dehydroascorbic acid. J Biol Chem. 272(30):18982–18989.
  • Sabharwal AK, May JM. 2008. Alpha-lipoic acid and ascorbate prevent ldl oxidation and oxidant stress in endothelial cells. Mol Cell Biochem. 309(1–2):125–132.
  • Sandoval-Acuna C, Ferreira J, Speisky H. 2014. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys. 559:75–90.
  • Savini I, Rossi A, Pierro C, Avigliano L, Catani MV. 2008. SVCT1 and SVCT2: key proteins for Vitamin C uptake. Amino Acids. 34(3):347–355.
  • Schmidt HHHW, Stocker R, Vollbracht C, Paulsen G, Riley D, Daiber A, Cuadrado A. 2015. Antioxidants in translational medicine. Antioxid Redox Signal. 23(14):1130–1143.
  • Scire A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G, Galli F, Armeni T. 2019. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors. 45(2):152–168.
  • Scotti M, Burattini S, Falcieri E, Cantoni O, Fiorani M. 2017. “Molecular identification and functional characterization of mitochondrial transporter SVCT2 in C2C12 Skeletal Muscle Cells”. Abstracts of the XIII IIM – Myology Meeting October 13–16, 2016. Eur J Transl Myol. 27(1):4–32.
  • Shadel GS, Horvath TL. 2015. Mitochondrial ros signaling in organismal homeostasis. Cell. 163(3):560–569.
  • Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O'Sullivan JD, Fung V, Smith RA, Murphy MP, Taylor KM. 2010. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant mitoq as a disease-modifying therapy in Parkinson’s disease. Mov Disord. 25(11):1670–1674.
  • Sotiriou S, Gispert S, Cheng J, Wang Y, Chen A, Hoogstraten-Miller S, Miller GF, Kwon O, Levine M, Guttentag SH, et al. 2002. Ascorbic-acid transporter Slc23a1 is essential for Vitamin C Transport into the brain and for perinatal survival. Nat Med. 8(5):514–517.
  • Srinivasan V, Spence DW, Pandi-Perumal SR, Brown GM, Cardinali DP. 2011. Melatonin in mitochondrial dysfunction and related disorders. Int J Alzheimers Dis. 2011:326320.
  • Teixeira J, Deus CM, Borges F, Oliveira PJ. 2018. Mitochondria: targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants. Int J Biochem Cell Biol. 97:98–103.
  • Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA. 1999. A family of mammalian Na+-dependent L-Ascorbic acid transporters. Nature. 399(6731):70–75.
  • Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. 2017. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun. 482(3):426–431.
  • Valdecantos MP, Pérez-Matute P, Quintero P, Martínez JA. 2010. Vitamin C, resveratrol and lipoic acid actions on isolated rat liver mitochondria: all antioxidants but different. Redox Rep. 15(5):207–216.
  • Venditti P, Stefano LD, Meo SD. 2013. Mitochondrial metabolism of reactive oxygen species. Mitochondrion. 13(2):71–82.
  • Vera JC, Rivas CI, Fischbarg J, Golde DW. 1993. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature. 364(6432):79–82.
  • Washko PW, Wang Y, Levine M. 1993. Ascorbic acid recycling in human neutrophils. J Biol Chem. 268(21):15531–15535.
  • Wilson JX. 2005. Regulation of Vitamin C transport. Annu Rev Nutr. 25(1):105–125.
  • Winkler BS, Orselli SM, Rex TS. 1994. The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med. 17(4):333–349.
  • Xiao J. 2017. Dietary flavonoid aglycones and their glycosides: which show better biological significance? Crit Rev Food Sci Nutr. 57(9):1874–1905.
  • Zarjou A, Sanders PW, Mehta RL, Agarwal A. 2012. Enabling innovative translational research in acute kidney injury. Clin Transl Sci. 5(1):93–101.
  • Zhang ZW, Xu XC, Liu T, Yuan S. 2016. Mitochondrion-permeable antioxidants to treat ROS-burst-mediated acute diseases. Oxid Med Cell Longev. 2016:6859523.
  • Zhao J, Yang J, Xie Y. 2019. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: an overview. Int J Pharm. 570:118642.
  • Zou X, Ratti BA, O’Brien JG, Lautenschlager SO, Gius DR, Bonini MG, Zhu Y. 2017. Manganese superoxide dismutase (SOD2): is there a center in the universe of mitochondrial redox signaling? J Bioenerg Biomembr. 49(4):325–333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.