384
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Environmental and industrial developments in radiation cataractogenesis

, , &
Pages 1074-1082 | Received 02 Mar 2020, Accepted 22 Apr 2020, Published online: 26 May 2020

References

  • Ahmed EA, Rosemann M, Scherthan H. 2018. NHEJ contributes to the fast repair of radiation-induced DNA double-strand breaks at late Prophase I telomeres. Health Phys. 115(1):102–107.
  • Ainsbury EA, Barnard S, Bright S, Dalke C, Jarrin M, Kunze S, Tanner R, Dynlacht JR, Quinlan RA, Graw J, et al. 2016. Ionizing radiation induced cataracts: recent biological and mechanistic developments and perspectives for future research. Mutat Res. 770:238–261.
  • Babizhayev MA, Vishnyakova KS, Yegorov YE. 2011. Telomere-dependent senescent phenotype of lens epithelial cells as a biological marker of aging and cataractogenesis: the role of oxidative stress intensity and specific mechanism of phospholipid hydroperoxide toxicity in lens and aqueous. Fundam Clin Pharmacol. 25(2):139–162.
  • Babizhayev MA, Yegorov YE. 2010. Telomere attrition in lens epithelial cells - a target for N-acetylcarnosine therapy. Front Biosci (Landmark Ed). 15:934–956.
  • Bai F, Xi JH, Wawrousek EF, Fleming TP, Andley UP. 2003. Hyperproliferation and p53 status of lens epithelial cells derived from alphaB-crystallin knockout mice. J Biol Chem. 278(38):36876–36886.
  • Barnard SGR, Moquet J, Lloyd S, Ellender M, Ainsbury EA, Quinlan RA. 2018. Dotting the eyes: mouse strain dependency of the lens epithelium to low dose radiation-induced DNA damage. Int J Radiat Biol. 94(12):1116–1124.
  • Blakely E, Chang P, Lommel L, Bjornstad K, Dixon M, Tobias C, Kumar K, Blakely WF. 1989. Cell-cycle radiation response: role of intracellular factors. Advances in Space Research : The Official Journal of the Committee on Space Research (COSPAR). Adv Space Res. 9(10):177–186.
  • Clutton SM, Townsend KM, Walker C, Ansell JD, Wright EG. 1996. Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures. Carcinogenesis. 17(8):1633–1639.
  • Cohen B, Addadi Y, Sapoznik S, Meir G, Kalchenko V, Harmelin A, Ben-Dor S, Neeman M. 2009. Transcriptional regulation of vascular endothelial growth factor C by oxidative and thermal stress is mediated by lens epithelium-derived growth factor/p75. Neoplasia. 11(9):921–933.
  • Cucinotta FA, Cacao E, Kim MY, Saganti PB. 2019. Non-targeted effects lead to a paridigm shift in risk assessment for a mission to the earth's moon or martian moon phobos. Radiat Prot Dosimetry. 183(1–2):213–218.
  • Dalke C, Neff F, Bains SK, Bright S, Lord D, Reitmeir P, Rößler U, Samaga D, Unger K, Braselmann H, et al. 2018. Lifetime study in mice after acute low-dose ionizing radiation: a multifactorial study with special focus on cataract risk. Radiat Environ Biophys. 57(2):99–113.
  • Fernandez-Palomo C, Seymour C, Mothersill C. 2016. Inter-relationship between low-dose hyper-radiosensitivity and radiation-induced bystander effects in the human t98g glioma and the epithelial HaCaT cell line. Radiat Res. 185(2):124–133.
  • Frenzel M, Ricoul M, Benadjaoud MA, Bellamy M, Lenain A, Haddy N, Diallo I, Mateus C, de Vathaire F, Sabatier L. 2017. Retrospective cohort study and biobanking of patients treated for hemangioma in childhood – telomeres as biomarker of aging and radiation exposure. Int J Radiat Biol. 93(10):1040–1053.
  • Garnier-Laplace J, Geras’kin S, Della-Vedova C, Beaugelin-Seiller K, Hinton TG, Real A, Oudalova A. 2013. Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. J Environ Radioact. 121:12–21.
  • Government of Canada. 2019. Radiation Protection Regulations. Available from Justice Laws; [accessed 2020 May 14]. https://laws-lois.justice.gc.ca/PDF/SOR-2000-203.pdf.
  • Gow MD, Seymour CB, Byun SH, Mothersill CE. 2008. Effect of dose rate on the radiation-induced bystander response. Phys Med Biol. 53(1):119–132.
  • Hall EJ, Giaccia AJ. 2019. Radiobiology for the radiologist, 8th ed. Philadelphia: Wolter Kluwers.
  • Hall EJ, Worgul BV, Smilenov L, Elliston CD, Brenner DJ. 2006. The relative biological effectiveness of densely ionizing heavy-ion radiation for inducing ocular cataracts in wild type versus mice heterozygous for the ATM gene. Radiat Environ Biophys. 45(2):99–104.
  • Hamada N. 2017. Ionizing radiation sensitivity of the ocular lens and its dose rate dependence. Int J Radiat Biol. 93(10):1024–1034.
  • Hamada N, Fujimichi Y. 2015. Role of carcinogenesis related mechanisms in cataractogenesis and its implications for ionizing radiation cataractogenesis. Cancer Lett. 368(2):262–274.
  • Hurem S, Gomes T, Brede DA, Lindbo Hansen E, Mutoloki S, Fernandez C, Mothersill C, Salbu B, Kassaye YA, Olsen AK, et al. 2017. Parental gamma irradiation induces reprotoxic effects accompanied by genomic instability in zebrafish (Danio rerio) embryos. Environ Res. 159:564–578.
  • Jentzsch T, Pietsch CM, Stigler B, Ramseier LE, Seifert B, Werner C. 2015. The compliance with and knowledge about radiation protection in operating room personnel: a cross-sectional study with a questionnaire. Arch Orthop Trauma Surg. 135(9):1233–1240.
  • Karatasakis A, Brilakis HS, Danek BA, Karacsonyi J, Martinez-Parachini JR, Nguyen-Trong P-KJ, Alame AJ, Roesle MK, Rangan BV, Rosenfield K, et al. 2018. Radiation-associated lens changes in the cardiac catheterization laboratory: results from the IC-CATARACT (CATaracts Attributed to RAdiation in the CaTh lab) study . Catheter Cardiovasc Interv. 91(4):647–654.
  • Khan D, Lacasse M, Khan R, Murphy K. 2017. Radiation cataractogenesis: the progression of our understanding and its clinical consequences. J Vasc Interv Radiol. 28(3):412–419.
  • Khan SY, Hackett SF, Lee MC, Pourmand N, Talbot CC, Jr, Riazuddin SA. 2015. Transcriptome profiling of developing murine lens through RNA sequencing. Invest Ophthalmol Vis Sci. 56(8):4919–4926.
  • Kleiman NJ, David J, Elliston CD, Hopkins KM, Smilenov LB, Brenner DJ, Worgul BV, Hall EJ, Lieberman HB. 2007. Mrad9 and Atm haploinsufficiency enhance spontaneous and X-ray-induced cataractogenesis in mice. Radiat Res. 168(5):567–573.
  • Kleiman NJ, Spector A. 1993. DNA single strand breaks in human lens epithelial cells from patients with cataract. Curr Eye Res. 12(5):423–431.
  • Kocer I, Taysi S, Ertekin MV, Karslioglu I, Gepdiremen A, Sezen O, Serifoglu K. 2007. The effect of L-carnitine in the prevention of ionizing radiation-induced cataracts: a rat model. Graefes Arch Clin Exp Ophthalmol. 245(4):588–594.
  • Krueger SA, Wilson GD, Piasentin E, Joiner MC, Marples B. 2010. The effects of G2-phase enrichment and checkpoint abrogation on low-dose hyper-radiosensitivity. Int J Radiat Oncol Biol Phys. 77(5):1509–1517.
  • Kubo E, Fatma N, Akagi Y, Beier DR, Singh SP, Singh DP. 2008. TAT-mediated PRDX6 protein transduction protects against eye lens epithelial cell death and delays lens opacity. Am J Physiol Cell Physiol. 294(3):C842–55.
  • Le M, Fernandez-Palomo C, McNeill FE, Seymour CB, Rainbow AJ, Mothersill CE. 2017. Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: reconciling the mechanisms mediating the bystander effect. PLoS One. 12(3):e0173685
  • Le M, Mothersill CE, Seymour CB, Rainbow AJ, McNeill FE. 2017. An observed effect of p53 status on the bystander response to radiation-induced cellular photon emission. Radiat Res. 187(2):169–185.
  • Le M, McNeill FE, Seymour CB, Rusin A, Diamond K, Rainbow AJ, Murphy J, Mothersill CE. 2018. Modulation of oxidative phosphorylation (OXPHOS) by radiation- induced biophotons. Environ Res. 163:80–87.
  • Lehmann P, Boratyński Z, Mappes T, Mousseau TA, Møller AP. 2016. Fitness costs of increased cataract frequency and cumulative radiation dose in natural mammalian populations from Chernobyl. Sci Rep. 6:19974.
  • Lian Y, Xiao J, Ji X, Guan S, Ge H, Li F, Ning L, Liu J. 2015. Protracted low-dose radiation exposure and cataract in a cohort of Chinese industry radiographers. Occup Environ Med. 72(9):640–647.
  • Lipman RM, Tripathi BJ, Tripathi RC. 1988. Cataracts induced by microwave and ionizing radiation. Surv Ophthalmol. 33(3):200–210.
  • Little MP, Cahoon EK, Kitahara CM, Simon SL, Hamada N, Linet MS. 2020. Occupational radiation exposure and excess additive risk of cataract incidence in a cohort of US radiologic technologists. Occup Environ Med. 77(1):1–8.
  • Little MP, Kitahara CM, Cahoon EK, Bernier M, Velazquez-Kronen R, Doody MM, Borrego D, Miller JS, Alexander BH, Simon SL, et al. 2018. Occupational radiation exposure and risk of cataract incidence in a cohort of US radiologic technologists. Eur J Epidemiol. 33(12):1179–1191.
  • Liu WB, Li Y, Zhang L, Chen HG, Sun S, Liu JP, Liu Y, Li DW. 2008. Differential expression of the catalytic subunits for PP-1 and PP-2A and the regulatory subunits for PP-2A in mouse eye. Mol Vis. 14:762–773.
  • Liu Z, Mothersill CE, McNeill FE, Lyng FM, Byun SH, Seymour CB, Prestwich WV. 2006. A dose threshold for a medium transfer bystander effect for a human skin cell line. Radiat Res. 166(1 Pt 1):19–23.
  • Löbrich M, Jeggo PA. 2007. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer. 7(11):861–869.
  • Lyng FM, Seymour CB, Mothersill C. 2001. Oxidative stress in cells exposed to low levels of ionizing radiation. Biochem Soc Trans. 29(Pt 2):350–353.
  • Maguire P, Mothersill C, McClean B, Seymour C, Lyng FM. 2007. Modulation of radiation responses by pre-exposure to irradiated cell conditioned medium. Radiat Res. 167(4):485–492.
  • Markiewicz E, Barnard S, Haines J, Coster M, van Geel O, Wu W, Richards S, Ainsbury E, Rothkamm K, Bouffler S, et al. 2015. Nonlinear ionizing radiation-induced changes in eye lens cell proliferation, cyclin D1 expression and lens shape. Open Biol. 5(4). DOI:10.1098/rsob.150011
  • Mastromonaco C, Balazsi M, Zoroquiain P, Esposito E, Coblentz J, Logan P, Burnier MN. 2018. Removing subjective post-mortem grading from posterior capsular opacification: a new automated detector opacification software, ADOS. Curr Eye Res. 43(11):1362–1368.
  • Matsubara K, Lertsuwunseri V, Srimahachota S, Krisanachinda A, Khambhiphant B, Tulvatana W, Sudchai W, Rehani M. 2017. Eye lens dosimetry and the study on radiation cataract in interventional cardiologists. Phys Med. 44:232–235.
  • Meade AD, Howe O, Unterreiner V, Sockalingum GD, Byrne HJ, Lyng FM. 2016. Vibrational spectroscopy in sensing radiobiological effects: analyses of targeted and non-targeted effects in human keratinocytes. Faraday Discuss. 187:213–234.
  • Michael R, Bron AJ. 2011. The ageing lens and cataract: a model of normal and pathological ageing. Phil Trans R Soc B. 366(1568):1278–1292.
  • Mothersill C, Rusin A, Seymour C. 2017. Low doses and non-targeted effects in environmental radiation protection; where are we now and where should we go? Environ Res. 159:484–490.
  • Mothersill C, Seymour C. 2018. Old data-new concepts: integrating “indirect effects” into radiation protection. Health Phys. 115(1):170–178.
  • Mothersill CE, O’Malley KJ, Murphy DM, Seymour CB, Lorimore SA, Wright EG. 1999. Identification and characterization of three subtypes of radiation response in normal human urothelial cultures exposed to ionizing radiation. Carcinogenesis. 20(12):2273–2278.
  • Mothersill C, Bristow RG, Harding SM, Smith RW, Mersov A, Seymour CB. 2011. A role for p53 in the response of bystander cells to receipt of medium borne signals from irradiated cells. Int J Radiat Biol. 87(11):1120–1125.
  • Mothersill C, Lyng F, Seymour C, Maguire P, Lorimore S, Wright E. 2005. Genetic factors influencing bystander signaling in murine bladder epithelium after low-dose irradiation in vivo. Radiat Res. 163(4):391–399.
  • Mousseau TA, Møller AP. 2013. Elevated frequency of cataracts in birds from chernobyl. PLoS One. 8(7):e66939.
  • National Aeronautics and Space Administration. 2018. Why Space Radiation Matters. Available from NASA; [accessed 2020 May 14]. https://www.nasa.gov/analogs/nsrl/why-space-radiation-matters.
  • O’Connor U, Gallagher A, Malone L, O’Reilly G. 2013. Occupational radiation dose to eyes from endoscopic retrograde cholangiopancreatography procedures in light of the revised eye lens dose limit from the International Commission on Radiological Protection. Br J Radiol. 86(1022):20120289.
  • Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F. 2005. Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study. Arch Ophthalmol. (Chicago, IL: 1960). 123(8):1102–1105
  • Rastegar ZN, Eckart P, Manfred M. 2002. Radiation-induced cataract in astronauts and cosmonauts. Graefes Arch Clin Exp Ophthalmol. 240(7):543–547.
  • Ruotolo R, Grassi F, Percudani R, Rivetti C, Martorana D, Maraini G, Ottonello S. 2003. Gene expression profiling in human age-related nuclear cataract. Mol Vis. 9:538–548.
  • Short SC, Woodcock M, Marples B, Joiner MC. 2003. Effects of cell cycle phase on low-dose hyper-radiosensitivity. Int J Radiat Biol. 79(2):99–105.
  • Scalchi P, Magagna J, Montenegro GM, Beghetto M, Boi L, Dall’Acqua J, Francescon P, Savastano S. 2018. Eye lens dose monitoring in interventional radiology. Physica Medica. 52:83–84.
  • Schettino G, Folkard M, Michael BD, Prise KM. 2005. Low-dose binary behavior of bystander cell killing after microbeam irradiation of a single cell with focused c(k) x rays. Radiat Res. 163(3):332–336.
  • Schöllnberger H, Mebust MR, Crawford-Brown DJ, Eckl PM, Hofmann W. 2001. Significance of cell-cycle delay, multiple initiation pathways, misrepair and replication errors in a model of radiobiological effects. Int J Radiat Biol. 77(4):519–527.
  • Schöllnberger H, Scott BR, Hanson TE. 2001. Application of Bayesian inference to characterize risks associated with low doses of low-LET radiation. Bull Math Biol. 63(5):865–883.
  • Shuryak I. 2019. Enhancing low-dose risk assessment using mechanistic mathematical models of radiation effects. J Radiol Prot. 39(4):S1–S13.
  • Tauchi H, Waku H, Matsumoto E, Yara S, Okumura S, Iwata Y, Komatsu K, Furusawa Y, Eguchi-Kasai K, Tachibana A. 2009. Two major factors involved in the reverse dose-rate effect for somatic mutation induction are the cell cycle position and LET value. J Radiat Res. 50(5):441–448.
  • Taylor HR, West SK, Rosenthal FS, Muñoz B, Newland HS, Abbey H, Emmett EA. 1988. Effect of ultraviolet radiation on cataract formation. N Engl J Med. 319(22):1429–1433.
  • Taysi S, Abdulrahman ZK, Okumus S, Demir E, Demir T, Akan M, Saricicek E, Saricicek V, Aksoy A, Tarakcioglu M. 2015. The radioprotective effect of Nigella sativa on nitrosative stress in lens tissue in radiation-induced cataract in rat. Cutan Ocul Toxicol. 34(2):101–106.
  • Tomita M, Maeda M. 2015. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses. J Radiat Res. 56(2):205–219. Mar.
  • Truscott RJ. 2005. Age-related nuclear cataract-oxidation is the key. Exp Eye Res. 80(5):709–725.
  • Uwineza A, Kalligeraki AA, Hamada N, Jarrin M, Quinlan RA. 2019. Cataractogenic load – A concept to study the contribution of ionizing radiation to accelerated aging in the eye lens. Mutation research. 779:68–81.
  • van Rooijen B, de Haan MW, Das M, Arnoldussen C, de Graaf R, Backes WH, van Zwam WH, Jeukens C. 2014. Efficacy of Radiation Safety Glasses in Interventional Radiology. Cardiovasc Intervent Radiol. 37(5):1149–1155.
  • Vanhavere F, Carinou E, Domienik J, Donadille L, Ginjaume M, Gualdrini G, Koukorava C, Krim S, Nikodemova D, Ruiz-Lopez N, et al. 2011. Measurements of eye lens doses in interventional radiology and cardiology: final results of the ORAMED project. Radiation Measurements. 46(11):1243–1247.
  • Wilde G, Sjöstrand J. 1997. A clinical study of radiation cataract formation in adult life following gamma irradiation of the lens in early childhood. Br J Ophthalmol. 81(4):261–266.
  • Williams D. (2019, Apr 1). Do rodents in radioactive areas around Chernobyl Ukraine have high prevalence of cataracts? In BSAVA Congress Proceedings (pp. 458–458). BSAVA Library.
  • Worgul BV, Smilenov L, Brenner DJ, Junk A, Zhou W, Hall EJ. 2002. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts. Proc Natl Acad Sci USA. 99(15):9836–9839.
  • Worgul BV, Smilenov L, Brenner DJ, Vazquez M, Hall EJ. 2005. Mice heterozygous for the ATM gene are more sensitive to both X-ray and heavy ion exposure than are wildtypes. Adv Space Res. 35(2):254–259.
  • Worgul BV, Smilenov L, Brenner DJ, Vazquez M, Hall EJ. 2005. Mice heterozygous for the ATM gene are more sensitive to both X-ray and heavy ion exposure than are wildtypes. Adv Space Res. 35(2):254–259.
  • Worgul BV, Kundiyev YI, Sergiyenko NM, Chumak VV, Vitte PM, Medvedovsky C, Bakhanova EV, Junk AK, Kyrychenko OY, Musijachenko NV. et al. 2007. Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiation Research. Radiat Res. 167(2):233–243.
  • Zigman S. 1983. The role of sunlight in human cataract formation. Surv Ophthalmol. 27(5):317–325.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.