327
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Biologically-based modeling of radiation risk and biomarker prevalence for papillary thyroid cancer in Japanese a-bomb survivors 1958–2005

, &
Pages 19-30 | Received 30 Jan 2020, Accepted 13 May 2020, Published online: 02 Jul 2020

References

  • Abend M, Pfeiffer RM, Ruf C, Hatch M, Bogdanova TI, Tronko MD, Hartmann J, Meineke V, Mabuchi K, Brenner AV. 2013. Iodine-131 dose-dependent gene expression: alterations in both normal and tumour thyroid tissues of post-Chernobyl thyroid cancers. Br J Cancer. 109(8):2286–2294.
  • Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL, Auman JT, Balasundaram M, Balu S, Baylin SB, et al. 2014. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell. 159(3):676–690.
  • Behjati S, Gundem G, Wedge DC, Roberts ND, Tarpey PS, Cooke SL, Loo PV, Alexandrov LB, Ramakrishna M, Davies H, ICGC Prostate Group, et al. 2016. Mutational signatures of ionizing radiation in second malignancies. Nat Commun. 7:12605.
  • Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, Vitale L, Pelleri MC, Tassani S, Piva F, et al. 2013. An estimation of the number of cells in the human body. Ann Hum Biol. 40(6):463–471.
  • Bogdanova TI, Zurnadzhy LY, Nikiforov YE, Leeman-Neill RJ, Tronko MD, Chanock S, Mabuchi K, Likhtarov IA, Kovgan LM, Drozdovitch V, et al. 2015. Histopathological features of papillary thyroid carcinomas detected during four screening examinations of a Ukrainian-American cohort. Br J Cancer. 113(11):1556–1564.
  • Bolker B, RDC Team. 2017. BBMLE: tools for general maximum likelihood estimation. R package version 1.0.20. https://CRAN.R-project.org/package=bbmle.
  • Brenner AV, Tronko MD, Hatch M, Bogdanova TI, Oliynik VA, Lubin JH, Zablotska LB, Tereschenko VP, McConnell RJ, Zamotaeva GA, et al. 2011. I-131 dose response for incident thyroid cancers in Ukraine related to the Chernobyl accident. Environ Health Perspect. 119(7):933–939.
  • Castelletti N, Kaiser JC, Simonetto C, Furukawa K, Küchenhoff H, Stathopoulos GT. 2019. Risk of lung adenocarcinoma from smoking and radiation arises in distinct molecular pathways. Carcinogenesis. 40(10):1240–1250.
  • Coclet J, Foureau F, Ketelbant P, Galand P, Dumont JE. 1989. Cell population kinetics in dog and human adult thyroid. Clin Endocrinol (Oxf)). 31(6):655–665.
  • Cullings HM, Fujita S, Funamoto S, Grant EJ, Kerr GD, Preston DL. 2006. Dose estimation for atomic bomb survivor studies: its evolution and present status. Radiat Res. 166(1 Pt 2):219–254.
  • Dom G, Tarabichi M, Unger K, Thomas G, Oczko-Wojciechowska M, Bogdanova T, Jarzab B, Dumont JE, Detours V, Maenhaut C. 2012. A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas. Br J Cancer. 107(6):994–1000.
  • Dumont JE, Lamy F, Roger P, Maenhaut C. 1992. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol Rev. 72(3):667–697.
  • Efanov AA, Brenner AV, Bogdanova TI, Kelly LM, Liu P, Little MP, Wald AI, Hatch M, Zurnadzy LY, Nikiforova MN, et al. 2018. Investigation of the relationship between radiation dose and gene mutations and fusions in post-Chernobyl thyroid cancer. J Natl Cancer Inst. 110(4):371–378.
  • Fernandez-Antoran D, Piedrafita G, Murai K, Ong SH, Herms A, Frezza C, Jones PH. 2019. Outcompeting p53-mutant cells in the normal esophagus by redox manipulation. Cell Stem Cell. 25(3):329–341.e6.
  • Fierabracci A. 2012. Identifying thyroid stem/progenitor cells: advances and limitations. J Endocrinol. 213(1):1–13.
  • Fukushima Medical University. 2016. Basic survey, appendix (estimated external radiation dose. Fukushima city 960–1295, Japan: Office of International Cooperation, Radiation Medical Science Center. http://fmu-global.jp/download/appendix-estimated-external-radiation-dose-16/.
  • Fukushima Medical University. 2017. Thyroid ultrasound examination (first full-scale thyroid screening program). Fukushima city 960–1295, Japan: Office of International Cooperation, Radiation Medical Science Center. http://fmu-global.jp/download/thyroid-ultrasound-examination-first-full-scale-thyroid-screening-program-3/.
  • Fukushima Medical University. 2018. Thyroid ultrasound examinations (second full-scale thyroid screening program). Fukushima city 960–1295, Japan: Office of International Cooperation, Radiation Medical Science Center. http://fmu-global.jp/download/thyroid-ultrasound-examinations-second-full-scale-thyroid-screening-program/.
  • Furukawa K, Preston D, Funamoto S, Yonehara S, Ito M, Tokuoka S, Sugiyama H, Soda M, Ozasa K, Mabuchi K. 2013. Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure. Int J Cancer. 132(5):1222–1226.
  • Grant EJ, Brenner A, Sugiyama H, Sakata R, Sadakane A, Utada M, Cahoon EK, Milder CM, Soda M, Cullings HM, et al. 2017. Solid cancer incidence among the life span study of atomic bomb survivors: 1958–2009. Radiat Res. 187(5):513–537.
  • Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, et al. 2017. Ionizing radiation biomarkers in epidemiological studies – an update. Mutat Res. 771:59–84.
  • Hamatani K, Eguchi H, Ito R, Mukai M, Takahashi K, Taga M, Imai K, Cologne J, Soda M, Arihiro K, et al. 2008. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Research. 68(17):7176–7182.
  • Handkiewicz-Junak D, Swierniak M, Rusinek D, Oczko-Wojciechowska M, Dom G, Maenhaut C, Unger K, Detours V, Bogdanova T, Thomas G, et al. 2016. Gene signature of the post-Chernobyl papillary thyroid cancer. Eur J Nucl Med Mol Imaging. 43(7):1267–1277.
  • Hatch M, Cardis E. 2017. Somatic health effects of Chernobyl: 30 years on. Eur J Epidemiol. 32(12):1047–1054.
  • Hayashi Y, Lagarde F, Tsuda N, Funamoto S, Preston DL, Koyama K, Mabuchi K, Ron E, Kodama K, Tokuoka S. 2010. Papillary microcarcinoma of the thyroid among atomic bomb survivors: tumor characteristics and radiation risk. Cancer. 116(7):1646–1655.
  • Hayashi T, Morishita Y, Khattree R, Misumi M, Sasaki K, Hayashi I, Yoshida K, Kajimura J, Kyoizumi S, Imai K, et al. 2012. Evaluation of systemic markers of inflammation in atomic-bomb survivors with special reference to radiation and age effects. FASEB J. 26(11):4765–4773.
  • Heidenreich WF, Atkinson M, Paretzke HG. 2001. Radiation-induced cell inactivation can increase the cancer risk. Radiat Res. 155(6):870–872.
  • Heidenreich WF, Paretzke HG. 2008. Promotion of initiated cells by radiation-induced cell inactivation. Radiat Res. 170(5):613–617.
  • Kaiser JC, Jacob P, Meckbach R, Cullings HM. 2012. Breast cancer risk in atomic bomb survivors from multi-model inference with incidence data 1958–1998. Radiat Environ Biophys. 51(1):1–14.
  • Kaiser JC, Meckbach R, Eidemüller M, Selmansberger M, Unger K, Shpak V, Blettner M, Zitzelsberger H, Jacob P. 2016. Integration of a radiation biomarker into modeling of thyroid carcinogenesis and post-Chernobyl risk assessment. Carcinogenesis. 37(12):1152–1160.
  • Kocher DC, Apostoaei AI, Henshaw RW, Hoffman FO, Schubauer-Berigan MK, Stancescu DO, Thomas BA, Trabalka JR, Gilbert ES, Land CE. 2008. Interactive RadioEpidemiological Program (IREP): a web-based tool for estimating probability of causation/assigned share of radiogenic cancers. Health Phys. 95(1):119–147.
  • Leeman-Neill RJ, Brenner AV, Little MP, Bogdanova TI, Hatch M, Zurnadzy LY, Mabuchi K, Tronko MD, Nikiforov YE. 2013. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer. 119(10):1792–1799.
  • OECD. 2013. Guidance document on developing and assessing adverse outcome pathways. In Environment Directorate Joint Meeting of the Chemicals Committee and the Working Party on Chemicals. Paris: Organization for Economic Co-operation and Development (OECD).
  • Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K. 2012. Studies of the mortality of atomic bomb survivors, report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res. 177(3):229–243.
  • Pierce DA, Vaeth M, Cologne JB. 2008. Allowance for random dose estimation errors in atomic bomb survivor studies: a revision. Radiat Res. 170(1):118–126.
  • Preston RJ. 2015. Integrating basic radiobiological science and epidemiological studies: why and how. Health Phys. 108(2):125–130.
  • Preston RJ. 2017. Can radiation research impact the estimation of risk? Int J Radiat Biol. 93(10):1009–1014.
  • R Core Team. 2018. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Rühm W, Eidemüller M, Kaiser JC. 2017. Biologically-based mechanistic models of radiation-related carcinogenesis applied to epidemiological data. Int J Radiat Biol. 93(10):1093–1117.
  • Selmansberger M, Braselmann H, Hess J, Bogdanova T, Abend M, Tronko M, Brenner A, Zitzelsberger H, Unger K. 2015. Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian-American cohort. Carcinogenesis. 36(11):1381–1387.
  • Selmansberger M, Feuchtinger A, Zurnadzhy L, Michna A, Kaiser JC, Abend M, Brenner A, Bogdanova T, Walch A, Unger K, et al. 2015. CLIP2 as radiation biomarker in papillary thyroid carcinoma. Oncogene. 34(30):3917–3925.
  • Selmansberger M, Kaiser JC, Hess J, Güthlin D, Likhtarev I, Shpak V, Tronko M, Brenner A, Abend M, Blettner M, et al. 2015. Dose-dependent expression of CLIP2 in post-Chernobyl papillary thyroid carcinomas. CARCIN. 36(7):748–756.
  • Takano T. 2017. Natural history of thyroid cancer [review]. Endocr J. 64(3):237–244.
  • Tronko M, Brenner AV, Bogdanova T, Shpak V, Oliynyk V, Cahoon EK, Drozdovitch V, Little MP, Tereshchenko V, Zamotayeva G, et al. 2017. Thyroid neoplasia risk is increased nearly 30 years after the Chernobyl accident. Int J Cancer. 141(8):1585–1588.
  • Tsuda T, Tokinobu A, Yamamoto E, Suzuki E. 2016. Thyroid cancer detection by ultrasound among residents ages 18 years and younger in Fukushima, Japan: 2011 to 2014. Epidemiology. 27(3):316–322.
  • Turner H, Firth D. 2015. Generalized nonlinear models in R: an overview of the gnm package. R package version 1.0-8. http://CRAN.R-project.org/package=gnm.
  • Ulanowski A, Eidemüller M, Güthlin D, Kaiser JC, Shemiakina E, Jacob P. 2016. Quantitative Abschätzung des Strahlenrisikos unter Beachtung individueller Expositionsszenarien, Teil 2 – ProZES: a tool for assessment of assigned share of radiation in probability of cancer development (Part II). Neuherberg, Germany: Bundesamt Für Strahlenschutz (BfS). Report. No.: 0221–2016112214169.
  • Venables WN, Ripley BD. 2002. Modern applied statistics with S. 4th ed. New York: Springer.
  • Vinken M, Knapen D, Vergauwen L, Hengstler JG, Angrish M, Whelan M. 2017. Adverse outcome pathways: a concise introduction for toxicologists. Arch Toxicol. 91(11):3697–3707.
  • Xing M. 2013. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 13(3):184–199.
  • Yamashita S, Suzuki S, Suzuki S, Shimura H, Saenko V. 2018. Lessons from Fukushima: latest findings of thyroid cancer after the Fukushima nuclear power plant accident. Thyroid. 28(1):11–22.
  • Zablotska LB, Nadyrov EA, Rozhko AV, Gong Z, Polyanskaya ON, McConnell RJ, O'Kane P, Brenner AV, Little MP, Ostroumova E, et al. 2015. Analysis of thyroid malignant pathologic findings identified during 3 rounds of screening (1997-2008) of a cohort of children and adolescents from Belarus exposed to radioiodines after the Chernobyl accident. Cancer. 121(3):457–466.
  • Zablotska LB, Ron E, Rozhko AV, Hatch M, Polyanskaya ON, Brenner AV, Lubin J, Romanov GN, McConnell RJ, O'Kane P, et al. 2011. Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident. Br J Cancer. 104(1):181–187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.