215
Views
10
CrossRef citations to date
0
Altmetric
Commentary

Biologically based models of cancer risk in radiation research

, &
Pages 2-11 | Received 14 Feb 2020, Accepted 13 May 2020, Published online: 16 Jul 2020

References

  • Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL, Auman JT, Balasundaram M, Balu S, Baylin SB, et al. 2014. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 159:676–690.
  • Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AWT, Wu Y, Boot A, Covington KR, Gordenin DA, Bergstrom EN, et al.; PCAWG Consortium. 2020. The repertoire of mutational signatures in human cancer. Nature. 578:94–101.
  • Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, et al. 2010. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 29:730–741.
  • Armitage P, Doll R. 1957. A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br J Cancer. 11:161–169.
  • Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, Kohlmeyer J, Riesenberg S, van den Boorn-Konijnenberg D, Hömig-Hölzel C, et al. 2014. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature. 507:109–113.
  • Behjati S, Gundem G, Wedge DC, Roberts ND, Tarpey PS, Cooke SL, Loo PV, Alexandrov LB, Ramakrishna M, Davies H, et al.; ICGC Prostate Group. 2016. Mutational signatures of ionizing radiation in second malignancies. Nat Commun. 7:12605.
  • Blettner M. 2015. Comment: the merits and limits of pooling data from nuclear power worker studies. Lancet Haematol. 2:e268–e269.
  • Boice JD. 2019. The Million Person Study relevance to space exploration and Mars. Int J Radiat Biol.
  • Boice JD, Cohen SS, Mumma MT, Ellis ED. 2019. The Million Person Study, whence it came and why. Int J Radiat Biol.
  • Brenner DJ. 2009. Extrapolating radiation-induced cancer risks from low doses to very low doses. Health Phys. 97:505–509.
  • Brenner AV, Preston DL, Sakata R, Sugiyama H, de Gonzalez AB, French B, Utada M, Cahoon EK, Sadakane A, Ozasa K, et al. 2018. Incidence of breast cancer in the life span study of atomic bomb survivors: 1958–2009. Radiat Res. 190:433–444.
  • Cahoon EK, Preston DL, Pierce DA, Grant E, Brenner AV, Mabuchi K, Utada M, Ozasa K. 2017. Lung, laryngeal and other respiratory cancer incidence among Japanese atomic bomb survivors: an updated analysis from 1958 through 2009. Radiat Res. 187:538–548.
  • Calabrese C, Davidson NR, Demircioğlu D, Fonseca NA, He Y, Kahles A, Lehmann KV, Liu F, Shiraishi Y, Soulette CM, et al.; PCAWG Consortium. 2020. Genomic basis for RNA alterations in cancer. Nature. 578:129–136.
  • Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks AN, Murray BA, et al.; Cancer Genome Atlas Research Network. 2016. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 48:607–616.
  • Campbell PJ, Getz G, Korbel JO, et al. 2020. Pan-cancer analysis of whole genomes. Nature. 578:82–93.
  • Castelletti N, Kaiser JC, Simonetto C, Furukawa K, Küchenhoff H, Stathopoulos GT. 2019. Risk of lung adenocarcinoma from smoking and radiation arises in distinct molecular pathways. Carcinogenesis. 40:1240–1250.
  • Chauhan V, Sherman S, Said Z, Yauk CL, Stainforth R. 2020. A case example of a radiation-relevant adverse outcome pathway to lung cancer. Int J Radiat Biol.
  • Chauhan V, Said Z, Daka J, Sadi B, Bijlani D, Marchetti F, Beaton D, Gaw A, Li C, Burtt J, et al. 2019. Is there a role for the adverse outcome pathway framework to support radiation protection? Int J Radiat Biol. 95:225–232.
  • Curtis S, Luebeck E, Hazelton W, Moolgavkar S. 2001. The role of promotion in carcinogenesis from protracted high-LET exposure. Phys Med. 17:157–160.
  • Dainiak N, Feinendegen LE, Hyer RN, Locke PA, Waltar AE. 2018. Synergies resulting from a systems biology approach: integrating radiation epidemiology and radiobiology to optimize protection of the public after exposure to low doses of ionizing radiation. Int J Radiat Biol. 94:2–7.
  • Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, Wangensteen KJ, Simithy J, Lan Y, Lin Y, Zhou Z, et al. 2017. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature. 550:402–406.
  • Drozsdik EJ, Madas BG. 2019. Quantitative analysis of the potential role of basal cell hyperplasia in the relationship between clonal expansion and radon concentration. Radiat Prot Dosimetry. 183:237–241.
  • Efanov AA, Brenner AV, Bogdanova TI, Kelly LM, Liu P, Little MP, Wald AI, Hatch M, Zurnadzy LY, Nikiforova MN, et al. 2018. Investigation of the relationship between radiation dose and gene mutations and fusions in post-chernobyl thyroid cancer. J Natl Cancer Inst. 110:371–378.
  • Egawa H, Furukawa K, Preston D, Funamoto S, Yonehara S, Matsuo T, Tokuoka S, Suyama A, Ozasa K, Kodama K, et al. 2012. Radiation and smoking effects on lung cancer incidence by histological types among atomic bomb survivors. Radiat Res. 178:191–201.
  • Eidemüller M, Holmberg E, Jacob P, Lundell M, Karlsson P. 2015. Breast cancer risk and possible mechanisms of radiation-induced genomic instability in the Swedish hemangioma cohort after reanalyzed dosimetry. Mutat Res. 775:1–9.
  • Fernandez-Antoran D, Piedrafita G, Murai K, Ong SH, Herms A, Frezza C, Jones PH. 2019. Outcompeting p53-mutant cells in the normal esophagus by redox manipulation. Cell Stem Cell. 25:329–341.e6.
  • Furukawa K, Preston D, Funamoto S, Yonehara S, Ito M, Tokuoka S, Sugiyama H, Soda M, Ozasa K, Mabuchi K. 2013. Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure. Int J Cancer. 132:1222–1226.
  • Furukawa K, Preston DL, Misumi M, Cullings HM. 2017. Handling incomplete smoking history data in survival analysis. Stat Methods Med Res. 26:707–723.
  • Gandhi S, Chandna S. 2017. Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies. Cancer Metastasis Rev. 36:375–393.
  • Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S, Rosebrock D, Mitchell TJ, Rubanova Y, Anur P, Yu K, et al.; PCAWG Consortium. 2020. The evolutionary history of 2,658 cancers. Nature. 578:122–128.
  • Grant EJ, Brenner A, Sugiyama H, Sakata R, Sadakane A, Utada M, Cahoon EK, Milder CM, Soda M, Cullings HM, et al. 2017. Solid cancer incidence among the life span study of atomic bomb survivors: 1958–2009. Radiat Res. 187:513–537.
  • Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, et al. 2017. Ionizing radiation biomarkers in epidemiological studies – an update. Mutat Res. 771:59–84.
  • Hamatani K, Eguchi H, Ito R, Mukai M, Takahashi K, Taga M, Imai K, Cologne J, Soda M, Arihiro K, et al. 2008. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res. 68:7176–7182.
  • Hayashi T, Morishita Y, Khattree R, Misumi M, Sasaki K, Hayashi I, Yoshida K, Kajimura J, Kyoizumi S, Imai K, et al. 2012. Evaluation of systemic markers of inflammation in atomic-bomb survivors with special reference to radiation and age effects. Faseb J. 26:4765–4773.
  • Heidenreich WF. 2002. Signals for a promoting action of radiation in cancer incidence data. J Radiol Prot. 22:A71–A74.
  • Heidenreich WF, Atkinson M, Paretzke HG. 2001. Radiation-induced cell inactivation can increase the cancer risk. Radiat Res. 155:870–872.
  • Heidenreich WF, Jacob P, Paretzke HG. 1997. Exact solutions of the clonal expansion model and their application to the incidence of solid tumors of atomic bomb survivors. Radiat Environ Biophys. 36:45–58.
  • Heidenreich WF, Paretzke HG. 2008. Promotion of initiated cells by radiation-induced cell inactivation. Radiat Res. 170:613–617.
  • Heidenreich WF, Tomásek L, Rogel A, Laurier D, Tirmarche M. 2004. Studies of radon-exposed miner cohorts using a biologically based model: comparison of current Czech and French data with historic data from China and Colorado. Radiat Environ Biophys. 43:247–256.
  • Heidenreich WF, Wellmann J, Jacob P, Wichmann HE. 2002. Mechanistic modelling in large case-control studies of lung cancer risk from smoking. Stat Med. 21:3055–3070.
  • Heng YJ, Lester SC, Tse GM, Factor RE, Allison KH, Collins LC, Chen YY, Jensen KC, Johnson NB, Jeong JC, et al. 2017. The molecular basis of breast cancer pathological phenotypes. J Pathol. 241:375–391.
  • Kai M, Luebeck EG, Moolgavkar SH. 1997. Analysis of the incidence of solid cancer among atomic bomb survivors using a two-stage model of carcinogenesis. Radiat Res. 148:348–358.
  • Kaiser JC, Jacob P, Meckbach R, Cullings HM. 2012. Breast cancer risk in atomic bomb survivors from multi-model inference with incidence data 1958–1998. Radiat Environ Biophys. 51:1–14.
  • Kaiser JC, Meckbach R, Eidemüller M, Selmansberger M, Unger K, Shpak V, Blettner M, Zitzelsberger H, Jacob P. 2016. Integration of a radiation biomarker into modeling of thyroid carcinogenesis and post-Chernobyl risk assessment. Carcinogenesis. 37:1152–1160.
  • Kaiser JC, Meckbach R, Jacob P. 2014. Genomic instability and radiation risk in molecular pathways to colon cancer. PLoS One. 9:e111024.
  • Kaiser JC, Misumi M, Furukawa K. 2020. Biologically-based modelling of radiation risk and biomarker prevalence for papillary thyroid cancer in Japanese A-bomb survivors 1958–2005. Submitted to IJRAB.
  • Kinzler KW, Vogelstein B. 1997. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature. 386:761, 763.
  • Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, Fulton LL, Dooling DJ, Ding L, Mardis ER, et al. 2012. Comprehensive molecular portraits of human breast tumours. Nature. 490:61–70.
  • Kocher DC, Apostoaei AI, Henshaw RW, Hoffman FO, Schubauer-Berigan MK, Stancescu DO, Thomas BA, Trabalka JR, Gilbert ES, Land CE. 2008. Interactive RadioEpidemiological Program (IREP): a web-based tool for estimating probability of causation/assigned share of radiogenic cancers. Health Phys. 95:119–147.
  • Laurent O, Gomolka M, Haylock R, Blanchardon E, Giussani A, Atkinson W, Baatout S, Bingham D, Cardis E, Hall J, et al. 2016. Concerted Uranium Research in Europe (CURE): toward a collaborative project integrating dosimetry, epidemiology and radiobiology to study the effects of occupational uranium exposure. J Radiol Prot. 36:319–345.
  • Leeman-Neill RJ, Brenner AV, Little MP, Bogdanova TI, Hatch M, Zurnadzy LY, Mabuchi K, Tronko MD, Nikiforov YE. 2013. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer. 119:1792–1799.
  • Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, O'Hagan JA, Hamra GB, Haylock R, Laurier D, Moissonnier M, et al. 2015. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol. 2:e276–e281.
  • Li Y, Roberts ND, Wala JA, Shapira O, Schumacher SE, Kumar K, Khurana E, Waszak S, Korbel JO, Haber JE, et al.; PCAWG Consortium. 2020. Patterns of somatic structural variation in human cancer genomes. Nature. 578:112–121.
  • Little M. 1996. Generalisations of the two-mutation and classical multi-stage models of carcinogenesis fitted to the Japanese atomic bomb survivor data. J Radiol Prot. 16:7–24.
  • Little MP, Hawkins MM, Charles MW, Hildreth NG. 1992. Fitting the Armitage-Doll model to radiation-exposed cohorts and implications for population cancer risks. Radiat Res. 132:207–221.
  • Little MP, Heidenreich WF, Li G. 2010. Parameter identifiability and redundancy: theoretical considerations. PLoS One. 5:e8915.
  • Little MP, Wright EG. 2003. A stochastic carcinogenesis model incorporating genomic instability fitted to colon cancer data. Math Biosci. 183:111–134.
  • Luebeck EG, Curtius K, Jeon J, Hazelton WD. 2013. Impact of tumor progression on cancer incidence curves. Cancer Res. 73:1086–1096.
  • Luebeck GE, Hazelton WD, Curtius K, Maden SK, Yu M, Carter KT, Burke W, Lampe PD, Li CI, Ulrich CM, et al. 2019. Implications of epigenetic drift in colorectal neoplasia. Cancer Res. 79:495–504.
  • Luebeck EG, Heidenreich WF, Hazelton WD, Paretzke HG, Moolgavkar SH. 1999. Biologically based analysis of the data for the Colorado uranium miners cohort: age, dose and dose-rate effects. Radiat Res. 152:339–351.
  • Luebeck EG, Moolgavkar SH. 2002. Multistage carcinogenesis and the incidence of colorectal cancer. Proc Natl Acad Sci U S A. 99:15095–15100.
  • McMahon SJ, Prise KM. 2019. Mechanistic modelling of radiation responses. Cancers (Basel). 11:205.
  • Meza R, Jeon J, Moolgavkar SH, Luebeck EG. 2008. Age-specific incidence of cancer: phases, transitions, and biological implications. Proc Natl Acad Sci U S A. 105:16284–16289.
  • Moolgavkar SH, Day NE, Stevens RG. 1980. Two-stage model for carcinogenesis: epidemiology of breast cancer in females. J Natl Cancer Inst. 65:559–569.
  • Moolgavkar SH, Knudson A. 1981. Mutation and cancer: a model for human carcinogenesis. J Natl Cancer Inst. 66:1037–1052.
  • Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, Kovar CL, Lewis LR, Morgan MB, Newsham IF, et al. 2012. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487:330–337.
  • OECD. 2013. Guidance document on developing and assessing adverse outcome pathways. Paris: OECD Publishing. (OECD series on testing and assessment number 184; ENV/JM/MONO(2013)6).
  • Preston RJ. 2015. Integrating basic radiobiological science and epidemiological studies: why and how. Health Phys. 108:125–130.
  • Preston RJ. 2017. Can radiation research impact the estimation of risk? Int J Radiat Biol. 93:1009–1014.
  • Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K. 2007. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 168:1–64.
  • Rheinbay E, Nielsen MM, Abascal F, Wala JA, Shapira O, Tiao G, Hornshøj H, Hess JM, Juul RI, Lin Z, et al.; PCAWG Consortium. 2020. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature. 578:102–111.
  • Rothkamm K, Löbrich M. 2002. Misrepair of radiation-induced DNA double-strand breaks and its relevance for tumorigenesis and cancer treatment (review). Int J Oncol. 21:433–440.
  • Rühm W, Eidemüller M, Kaiser JC. 2017. Biologically-based mechanistic models of radiation-related carcinogenesis applied to epidemiological data. Int J Radiat Biol. 93:1093–1117.
  • Rühm W, Woloschak GE, Shore RE, Azizova TV, Grosche B, Niwa O, Akiba S, Ono T, Suzuki K, Iwasaki T, et al. 2015. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection. Radiat Environ Biophys. 54:379–401.
  • Schaue D, McBride WH. 2015. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 12:527–540.
  • Selmansberger M, Feuchtinger A, Zurnadzhy L, Michna A, Kaiser JC, Abend M, Brenner A, Bogdanova T, Walch A, Unger K, et al. 2015a. CLIP2 as radiation biomarker in papillary thyroid carcinoma. Oncogene. 34:3917–3925.
  • Selmansberger M, Kaiser JC, Hess J, Güthlin D, Likhtarev I, Shpak V, Tronko M, Brenner A, Abend M, Blettner M, et al. 2015b. Dose-dependent expression of CLIP2 in post-Chernobyl papillary thyroid carcinomas. CARCIN. 36:748–756.
  • Shore RE, Beck HL, Boice JD, Caffrey EA, Davis S, Grogan HA, Mettler FA, Preston RJ, Till JE, Wakeford R, et al. 2019. Recent epidemiologic studies and the linear no-threshold model for radiation protection-considerations regarding NCRP commentary 27. Health Phys. 116:235–246.
  • Shuryak I. 2019. Enhancing low-dose risk assessment using mechanistic mathematical models of radiation effects. J Radiol Prot. 39:S1–S13.
  • Shuryak I, Brenner DJ. 2019. Mechanistic modeling predicts no significant dose rate effect on heavy-ion carcinogenesis at dose rates relevant for space exploration. Radiat Prot Dosimetry. 183:203–212.
  • Sugiyama H, Misumi M, Brenner A, Grant EJ, Sakata R, Sadakane A, Utada M, Preston DL, Mabuchi K, Ozasa K. 2020. Radiation risk of incident colorectal cancer by anatomical site among atomic bomb survivors: 1958–2009. Int J Cancer. 146:635–645.
  • Thompson DE, Mabuchi K, Ron E, Soda M, Tokunaga M, Ochikubo S, Sugimoto S, Ikeda T, Terasaki M, Izumi S, et al. 1994. Cancer incidence in atomic bomb survivors. Part II: solid tumors, 1958–1987. Radiat Res Suppl. 137:S17–S67.
  • Ulanowski A, Eidemüller M, Güthlin D, Kaiser JC, Shemiakina E, Jacob P. 2016. Quantitative Abschätzung des Strahlenrisikos unter Beachtung individueller Expositionsszenarien, Teil 2 – ProZES: a tool for assessment of assigned share of radiation in probability of cancer development (Part II). Bundesamt für Strahlenschutz (BfS). Available from: http://nbn-resolving.de/urn:nbn:de:0221-2016112214169
  • Vinken M, Knapen D, Vergauwen L, Hengstler JG, Angrish M, Whelan M. 2017. Adverse outcome pathways: a concise introduction for toxicologists. Arch Toxicol. 91:3697–3707.
  • Wakabayashi T, Kato H, Ikeda T, Schull WJ. 1983. Studies of the mortality of A-bomb survivors, report 7: part III. incidence of cancer in 1959-1978, based on the tumor registry. Radiat Res. 93:112–146.
  • Walsh L, Kaiser JC. 2011. Multi-model inference of adult and childhood leukaemia excess relative risks based on the Japanese A-bomb survivors mortality data (1950–2000). Radiat Environ Biophys. 50:21–35.
  • Zaballa I, Eidemüller M. 2016. Mechanistic study on lung cancer mortality after radon exposure in the Wismut cohort supports important role of clonal expansion in lung carcinogenesis. Radiat Environ Biophys. 55:299–315.
  • Zeggini E, Gloyn AL, Barton AC, Wain LV. 2019. Translational genomics and precision medicine: moving from the lab to the clinic. Science. 365:1409–1413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.