1,273
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Delayed effects of a single-dose whole-brain radiation therapy on glucose metabolism and myelin density: a longitudinal PET study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1135-1143 | Received 07 Oct 2019, Accepted 01 Jun 2020, Published online: 16 Jul 2020

References

  • Andersen PB, Krabbe K, Leffers AM, Schmiegelow M, Holm S, Laursen H, Müller JR, Paulson OB. 2003. Cerebral glucose metabolism in long-term survivors of childhood primary brain tumors treated with surgery and radiotherapy. J Neurooncol [Internet]. 62:305–313.
  • Antunes M, Biala G. 2012. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process. 13:93–110.
  • Balentova S, Adamkov M. 2015. Molecular, cellular and functional effects of radiation-induced brain injury: a review. Int J Mol Sci. 16:27796–27815.
  • Burns TC, Awad AJ, Li MD, Grant GA. 2016. Radiation-induced brain injury: low-hanging fruit for neuroregeneration. Neurosurg Focus. 40:E3.
  • Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, Arbuckle RB, Swint JM, Shiu AS, Maor MH, et al. 2009. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 10:1037–1044.
  • Chen L, Lu W, Yang Z, Yang S, Li C, Shi X, Tang Y. 2011. Age-related changes of the oligodendrocytes in rat subcortical white matter. Anat Rec (Hoboken). 294:487–493.
  • Clavo B, Robaina F, Montz R, Carames MA, Lloret M, Ponce P, Hernandez MA, Carreras JL. 2009. Modification of glucose metabolism in radiation-induced brain injury areas using cervical spinal cord stimulation. Acta Neurochir. 151:1419–1425.
  • de Paula Faria D, de Vries EFJ, Sijbesma JWA, Buchpiguel CA, Dierckx RAJO, Copray SCVM. 2014b. PET imaging of glucose metabolism, neuroinflammation and demyelination in the lysolecithin rat model for multiple sclerosis. Mult Scler. 20:1443–1452.
  • de Paula Faria D, de Vries EFJ, Sijbesma JA, Dierckx RAJ, Buchpiguel CA, Copray S. 2014c. PET imaging of demyelination and remyelination in the cuprizone mouse model for multiple sclerosis: a comparison between [11C]CIC and [11C]MeDAS. Neuroimage. 87:395–402.
  • de Paula Faria D, Vlaming MLH, Copray S, Tielen F, Anthonijsz HJA, Sijbesma JWA, Buchpiguel CA, Dierckx R, van der Hoorn JWA, de Vries E. 2014a. PET imaging of disease progression and treatment effects in the experimental autoimmune encephalomyelitis rat model. J Nucl Med. 55:1330–1335.
  • Deleye S, Verhaeghe J, Wyffels L, Dedeurwaerdere S, Stroobants S, Staelens S. 2014. Towards a reproducible protocol for repetitive and semi-quantitative rat brain imaging with (18) F-FDG: exemplified in a memantine pharmacological challenge. Neuroimage. 96:276–287.
  • Ennaceur A, Delacour J. 1988. A new one-trial test for neurobiological studies of memory in rats. 1:behavioral data. Behav Brain Res. 31:47–59.
  • Faria DdP, Copray S, Sijbesma JWA, Willemsen ATM, Buchpiguel CA, Dierckx R, de Vries E. 2014. PET imaging of focal demyelination and remyelination in a rat model of multiple sclerosis: comparison of [11C]MeDAS, [11C]CIC and [11C]PIB. Eur J Nucl Med Mol Imaging. 41:995–1003.
  • Fields RD. 2008. White matter matters. Sci Am. 298:42–9.
  • Filley CM, Fields RD. 2016. White matter and cognition: making the connection. J Neurophysiol. 116:2093–2104.
  • Filley CM. 2005. White matter and behavioral neurology. Ann N Y Acad Sci. 1064:162–83.
  • Filley CM. 2012. White matter dementia. Ther Adv Neurol Disord. 5:267–77.
  • Fu Z, Zhao Y, Zhang K, Wang J, Zhang M, Zhao X. 2017. Age-dependent responses of brain myelin integrity and behavioral performance to radiation in mice. Radiat Res. 188:505–516.
  • Fujii O, Tsujino K, Soejima T, Yoden E, Ichimiya Y, Sugimura K. 2006. White matter changes on magnetic resonance imaging following whole-brain radiotherapy for brain metastases. Radiat Med. 24:345–350.
  • Furuse M, Nonoguchi N, Kawabata S, Miyatake SI, Kuroiwa T. 2015. Delayed brain radiation necrosis: pathological review and new molecular targets for treatment. Med Mol Morphol. 48:183–190.
  • Greene-Schloesser D, Moore E, Robbins ME. 2013. Molecular pathways: radiation-induced cognitive impairment. Clin Cancer Res. 19:2294–2300.
  • Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD. 2012. Radiation-induced brain injury: a review. Front Oncol [Internet]. 2:73.
  • Kopschina Feltes P, de Vries EF, Juarez-Orozco LE, Kurtys E, Dierckx RA, Moriguchi-Jeckel CM, Doorduin J. 2019. Repeated social defeat induces transient glial activation and brain hypometabolism: a positron emission tomography imaging study. J Cereb Blood Flow Metab. 39:439–453.
  • Li H, Deng L, Bai HX, Sun J, Cao Y, Tao Y, States LJ, Farwell MD, Zhang P, Xiao B, et al. 2018. Diagnostic accuracy of amino acid and FDG-PET in differentiating brain metastasis recurrence from radionecrosis after radiotherapy: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 39:280–288.
  • Liu R, Page M, Solheim K, Fox S, Chang SM. 2009. Quality of life in adults with brain tumors: current knowledge and future directions. Neuro-oncology. 11:330–339.
  • Lombardi G, Bergo E, Del Bianco P, Bellu L, Pambuku A, Caccese M, Trentin L, Zagonel V. 2018. Quality of life perception, cognitive function, and psychological status in a real-world population of glioblastoma patients treated with radiotherapy and temozolomide: a single-center prospective study. Am J Clin Oncol. 41:1263–1271.
  • Maria OM, Eliopoulos N, Muanza T. 2017. Radiation-induced oral mucositis. Front Oncol. 7:89.
  • Mengler L, Khmelinskii A, Diedenhofen M, Po C, Staring M, Lelieveldt BPF, Hoehn M. 2014. Brain maturation of the adolescent rat cortex and striatum: changes in volume and myelination. Neuroimage. 84:35–44.
  • Nieman BJ, de Guzman AE, Gazdzinski LM, Lerch JP, Chakravarty MM, Pipitone J, Strother D, Fryer C, Bouffet E, Laughlin S, et al. 2015. White and gray matter abnormalities after cranial radiation in children and mice. Int J Radiat Oncol Biol Phys. 93:882–891.
  • Panagiotakos G, Alshamy G, Chan B, Abrams R, Greenberg E, Saxena A, Bradbury M, Edgar M, Gutin P, Tabar V. 2007. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS One. 2:e588.
  • Rana P, Khan AR, Modi S, Hemanth Kumar BS, Javed S, Tripathi RP, Khushu S. 2013. Altered brain metabolism after whole body irradiation in mice: a preliminary in vivo 1H MRS study. Int J Radiat Biol. 89:212–218.
  • Reddy NK, Brown FC, Fogarasi MC, Yu JB, Hess J, Chiang VS. 2018. Long-term quality of life in survivors of brain metastases: a roller coaster of perspective. Cureus [Internet]. 10:e2358.
  • Robbins ME, Brunso-Bechtold JK, Peiffer AM, Tsien CI, Bailey JE, Marks LB. 2012. Imaging radiation-induced normal tissue injury. Radiat Res. 177:449–466.
  • Roman DD, Sperduto PW. 1995. Neuropsychological effects of cranial radiation: current knowledge and future directions. Int J Radiat Oncol Biol Phys. 31:983–998.
  • Roozendaal B, Hernandez A, Cabrera SM, Hagewoud R, Malvaez M, Stefanko DP, Haettig J, Wood MA. 2010. Membrane-associated glucocorticoid activity is necessary for modulation of long-term memory via chromatin modification. J Neurosci. 30:5037–5046.
  • Sabsevitz DS, Bovi JA, Leo PD, Laviolette PS, Rand SD, Mueller WM, Schultz CJ. 2013. The role of pre-treatment white matter abnormalities in developing white matter changes following whole brain radiation: a volumetric study. J Neurooncol. 114:291–297.
  • Schiffer WK, Mirrione MM, Dewey SL. 2007. Optimizing experimental protocols for quantitative behavioral imaging with 18F-FDG in rodents. J Nucl Med. 48:277–287.
  • Sun R, Zhang LY, Chen LS, Tian Y. 2016. Long-term outcome of changes in cognitive function of young rats after various/different doses of whole brain irradiation. Neurol Res. 38:647–654.
  • Tallet AV, Azria D, Barlesi F, Spano JP, Carpentier AF, Gonçalves A, Metellus P. 2012. Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiat Oncol. 7:77.
  • Tofilon PJ, Fike JR. 2000. The radioresponse of the central nervous system: a dynamic process. Radiat Res. 153:357–370.
  • Torrens M, Malamitsi J, Karaiskos P, Valotassiou V, Laspas F, Andreou J, Stergiou C, Prassopoulos V. 2016. Although non-diagnostic between necrosis and recurrence, FDG PET/CT assists management of brain tumours after radiosurgery. In Vivo. 30:513–520.
  • Vállez Garcia D, Casteels C, Schwarz AJ, Dierckx R, Koole M, Doorduin J. 2015. A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox. PLoS One. 10:e0122363.
  • Vállez García D, Otte A, Dierckx R, Doorduin J. 2016. Three month follow-up of rat mild traumatic brain injury: a combined [18F]FDG and [11C]PK11195 positron emission study. J Neurotrauma. 33:1855–1865.
  • Wong KP, Sha W, Zhang X, Huang SC. 2011. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice. J Nucl Med. 52:800–807.
  • Woo SK, Lee TS, Kim KM, Kim JY, Jung JH, Kang JH, Cheon GJ, Choi CW, Lim SM. 2008. Anesthesia condition for (18)F-FDG imaging of lung metastasis tumors using small animal PET. Nucl Med Biol. 35:143–150.
  • Wu C, Wang C, Popescu DC, Zhu W, Somoza EA, Zhu J, Condie AG, Flask CA, Miller RH, Macklin W, et al. 2010. A novel PET marker for in vivo quantification of myelination. Bioorg Med Chem. 18:8592–8599.
  • Wu C, Zhu J, Baeslack J, Zaremba A, Hecker J, Kraso J, Matthews PM, Miller RH, Wang Y. 2013. Longitudinal positron emission tomography imaging for monitoring myelin repair in the spinal cord. Ann Neurol. 74:688–698.
  • Zilberter Y, Zilberter M. 2017. The vicious circle of hypometabolism in neurodegenerative diseases: ways and mechanisms of metabolic correction. J Neurosci Res. 95:2217–2235.