146
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Static magnetic field-enhanced osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells via matrix vesicle secretion

, , , , , & show all
Pages 1207-1217 | Received 27 Feb 2020, Accepted 17 May 2020, Published online: 13 Jul 2020

References

  • Anderson HC. 1989. Mechanism of mineral formation in bone. Lab Invest. 60(3):320–330.
  • Ansari AS, Yazid MD, Sainik N, Razali RA, Saim AB, Idrus R. 2018. Osteogenic induction of Wharton's Jelly-derived mesenchymal stem cell for bone regeneration: a systematic review. Stem Cells Int. 2018:2406462.
  • Baraniak PR, McDevitt TC. 2010. Stem cell paracrine actions and tissue regeneration. Regen Med. 5(1):121–143.
  • Bassett CA. 1988. Effects of a static magnetic field on fracture healing. Clin Orthop Relat Res. 234:311–312.
  • Chiu KH, Ou KL, Lee SY, Lin CT, Chang WJ, Chen CC, Huang HM. 2007. Static magnetic fields promote osteoblast-like cells differentiation via increasing the membrane rigidity. Ann Biomed Eng. 35(11):1932–1939.
  • Chuo W, Ma T, Saito T, Sugita Y, Maeda H, Zhang G, Li J, Liu J, Lu L. 2013. A preliminary study of the effect of static magnetic field acting on rat bone marrow mesenchymal stem cells during osteogenic differentiation in vitro. J Hard Tissue Biol. 22(2):227–232.
  • Davies JE, Walker JT, Keating A. 2017. Concise review: Wharton's Jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med. 6(7):1620–1630.
  • Golub EE. 2009. Role of matrix vesicles in biomineralization. Biochim Biophys Acta. 1790(12):1592–1598.
  • He Y, Yu L, Liu J, Li Y, Wu Y, Huang Z, Wu D, Wang H, Wu Z, Qiu G. 2019. Enhanced osteogenic differentiation of human bone-derived mesenchymal stem cells in 3-dimensional printed porous titanium scaffolds by static magnetic field through up-regulating Smad4. Faseb J. 33(5):6069–6081.
  • Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS, Wu CH, Lin WY, Chang SM. 2013. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One. 8(8):e72604.
  • Huang HM, Lee SY, Yao WC, Lin CT, Yeh CY. 2006. Static magnetic fields up-regulate osteoblast maturity by affecting local differentiation factors. Clin Orthop Rel Res. 447:201–208.
  • Javani JF, Abdolmaleki P, Movahedin M. 2013. Investigation on the effect of static magnetic field up to 15 mT on the viability and proliferation rate of rat bone marrow stem cells. In Vitro Cell Dev Biol Anim. 49(3):212–219.
  • Jin YZ, Lee JH. 2018. Mesenchymal stem cell therapy for bone regeneration. Clin Orthop Surg. 10(3):271–278.
  • Kim M, Jung H, Kim SC, Park JK, Seo YK. 2015. Electromagnetic fields and nanomagnetic particles increase the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Med. 35(1):153–160.
  • Knight MN, Hankenson DK. 2013. Mesenchymal stem cells in bone regeneration. Adv Wound Care. 2(6):306–316.
  • Kouroupis D, Churchman SM, English A, Emery P, Giannoudis PV, McGonaglr D, Jones EA. 2013. Asessment of umbilical cord tissue as a source of mesenchymal stem cell/endothelial cell mixtures for bone regeneration. Regen Med. 8(5):569–581.
  • Lew WZ, Huang YC, Huang KY, Lin CT, Tsai MT, Huang HM. 2018. Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism. J Tissue Eng Regen Med. 12(1):19–29.
  • Marędziak M, Marycz K, Lewandowski D, Siudzińska A, Śmieszek A. 2015. Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs)-a new approach in veterinary regenerative medicine. In Vitro Cell Dev Biol Anim. 51(3):230–240.
  • Marędziak M, Marycz K, Smieszek A, Lewandowski D, Toker NY. 2014. The influence of static magnetic fields on canine and equine mesenchymal stem cells derived from adipose tissue. In Vitro Cell Dev Biol Anim. 50(6):562–571.
  • Marycz K, Kornicka K, Röcken M. 2018. Static magnetic field (SMF) as a regulator of stem cell fate - new perspectives in regenerative medicine arising from an underestimated tool. Stem Cell Rev Rep. 14(6):785–792.
  • New SE, Aikawa E. 2013. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification. Arterioscler Thromb Vasc Biol. 33(8):1753–1758.
  • Oryan A, Kamali A, Moshiri A, Baghaban Eslaminejad M. 2017. Role of mesenchymal stem cells in bone regenerative medicine: what is the evidence? Cells Tissues Organs (Print). 204(2):59–83.
  • Rackov G, Garcia-Romero N, Esteban-Rubio S, Carrión-Navarro, Belda-Iniesta C, Ayuso-Sacido A. 2018. Vesicle-mediated control of cell function: the role of extracellular matrix and microenvironment. Front Physiol. 9:651.
  • Sadri M, Abdolmaleki P, Abrun S, Beiki B, Samani FS. 2017. Static Magnetic field effect on cell alignment, growth, and differentiation in human cord-derived mesenchymal stem cells. Cell Mol Bioeng. 10(3):249–262.
  • Shimizu E, Matsuda-Honjyo Y, Samoto H, Saito R, Nakajima Y, Nakayama Y, Kato N, Yamazaki M, Ogata Y. 2004. Static magnetic fields-induced bone sialoprotein (BSP) expression is mediated through FGF2 response element and pituitary-specific transcription factor-1 motif. J Cell Biochem. 91(6):1183–1196.
  • Szepesi Á, Matula Z, Szigeti A, Várady G, Szalma J, Szabó G, Uher F, Sarkadi B, Német K. 2016. In vitro characterization of human mesenchymal stem cells isolated from different tissues with a potential to promote complex bone regeneration. Stem Cells Int. 2016:3595941.
  • Walmsley GG, Ransom RC, Zielins ER, Leavitt T, Flacco JS, Hu MS, Lee AS, Longaker MT, Wan DC. 2016. Stem cells in bone regeneration. Stem Cell Rev Rep. 12(5):524–529.
  • Weinberger A, Nyska A, Giler S. 1996. Treatment of experimental inflammatory synovitis with continuous magnetic field. Isr J Med Sci. 32(12):1197–1201.
  • Yamamoto Y, Ohsaki Y, Goto T, Nakasima A, Iijima T. 2003. Effects of static magnetic fields on bone formation in rat osteoblast cultures. J Dent Res. 82(12):962–966.
  • Yan QC, Tomita N, Ikada Y. 1998. Effects of static magnetic field on bone formation of rat femurs. Med Eng Phys. 20(6):397–402.
  • Zablotskii V, Polyakova T, Lunov O, Dejneka A. 2016. How a high-gradient magnetic field could affect cell life. Sci Rep. 6. DOI:10.1038/srep37407
  • Zajdel A, Kałucka M, Kokoszka-Mikołaj E, Wilczok A. 2017. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton's jelly of the umbilical cord. Acta Biochim Pol. 64(2):365–369.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.