97
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of biological peculiarities of the radioprotective activity of double-stranded RNA isolated from Saccharomyces сerevisiae

ORCID Icon, , , ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 1173-1191 | Received 18 Mar 2020, Accepted 04 Jun 2020, Published online: 28 Jul 2020

References

  • Bartsch S, Kang LE, Symington LS. 2000. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Mol Cell Biol. 20(4):1194–1205.
  • Belli M, Sapora O, Tabocchini MA. 2002. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. J Radiat Res. 43(S):S13–S19.
  • Bergonié J, Tribondeau L. 2003. Interpretation of some results from radiotherapy and an attempt to determine a rational treatment technique. 1906. Yale J Biol Med. 76(4):181–182.
  • Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D, Kurnasov OV, Fort FL, Osterman AL, Didonato JA, et al. 2008. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science. 320(5873):226–230.
  • Chakraborty S, Karmakar K, Chakravortty D. 2014. Cells producing their own nemesis: understanding methylglyoxal metabolism. IUBMB Life. 66(10):667–678.
  • Chen Y, Xu Y, Du J, Guo J, Lei X, Cui J, Liu C, Cheng Y, Li B, Gao F, et al. 2016. Radioprotective effects of heat-killed Mycobacterium tuberculosis in cultured cells and radiosensitive tissues. Cell Physiol Biochem. 40(3–4):716–726.
  • Clark SA, Deppmann CD. 2020. How the stress of fight or flight turns hair white. Nature. 577(7792):623–624.
  • Dent P, Yacoub A, Contessa J, Caron R, Amorino G, Valerie K, Hagan MP, Grant S, Schmidt-Ullrich R. 2003. Stress and radiation-induced activation of multiple intracellular signaling pathways 1. Radiat Res. 159(3):283–300.
  • Dische Z. 1955. Color reactions of nucleic acid components. In: Chargaff E, Davidson JN, editors. The Nucleic Acids. Vol. 1. New York (NY): Academic Press; p. 285–305.
  • Dolgova EV, Evdokimov AN, Proskurina AS, Efremov YR, Bayborodin SI, Potter EA, Popov AA, Petruseva IO, Lavrik OI, Bogachev SS. 2019. Double-stranded DNA fragments bearing unrepairable lesions and their internalization into mouse Krebs-2 carcinoma cells. Nucleic Acid Ther. 29(5):278–290.
  • Dolgova EV, Alyamkina EA, Efremov YR, Nikolin VP, Popova NA, Tyrinova TV, Kozel AV, Minkevich AM, Andrushkevich OM, Zavyalov EL, et al. 2014. Identification of cancer stem cells and a strategy for their elimination. Cancer Biol Ther. 15(10):1378–1394.
  • Dolgova EV, Efremov YR, Orishchenko KE, Andrushkevich OM, Alyamkina EA, Proskurina AS, Bayborodin SI, Nikolin VP, Popova NA, Chernykh ER, et al. 2013. Delivery and processing of exogenous double-stranded DNA in mouse CD34+ hematopoietic progenitor cells and their cell cycle changes upon combined treatment with cyclophosphamide and double-stranded DNA. Gene. 528(2):74–83.
  • Dolgova EV, Nikolin VP, Popova NA, Proskurina AS, Orishenko KE, Alyamkina EA, Efremov YR, Chernykh ER, Ostanin AA, Malkova EM, et al. 2012. Internalization of exogenous DNA into internal compartments of murine bone marrow cells. Russ J Genet Appl Res. 2(6):440–452.
  • Dolgova EV, Potter EA, Proskurina AS, Minkevich AM, Chernych ER, Ostanin AA, Efremov YR, Bayborodin SI, Nikolin VP, Popova NA, et al. 2016. Properties of internalization factors contributing to the uptake of extracellular DNA into tumor-initiating stem cells of mouse Krebs-2 cell line. Stem Cell Res Ther. 7(1):76.
  • Dolgova EV, Shevela EY, Tyrinova TV, Minkevich AM, Proskurina AS, Potter EA, Orishchenko KE, Zavjalov EL, Bayborodin SI, Nikolin VP, et al. 2016. Nonadherent spheres with multiple myeloma surface markers contain cells that contribute to sphere formation and are capable of internalizing extracellular double-stranded DNA. Clin Lymphoma Myeloma Leuk. 16(10):563–576.
  • Fridovich I. 1995. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 64(1):97–112.
  • Goodhead DT. 1994. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol. 65(1):7–17.
  • Hanson WR, Houseman KA, Collins PW. 1988. Radiation protection in vivo by prostaglandins and related compounds of the arachidonic acid cascade. Pharmacol Ther. 39(1–3):347–356.
  • Ho C, Lee PH, Huang WJ, Hsu YC, Lin CL, Wang JY. 2007. Methylglyoxal-induced fibronectin gene expression through Ras-mediated NADPH oxidase activation in renal mesangial cells. Nephrology (Carlton). 12(4):348–356.
  • Karkischenko NN. 2005. The basics of biomodelling. Moskow, Russian: VPK; p. 608.
  • Kirikovich SS, Taranov OS, Omigov VV, Potter EA, Dolgova EV, Proskurina AS, Efremov YR, Bogachev SS. 2019. Ultrastructural analysis of the Krebs-2 ascites cancer cells treated with extracellular double-stranded DNA preparation. Ultrastruct Pathol. 43(1):56–65.
  • Kuntz S, Kunz C, Rudloff S. 2010. Carbonyl compounds methylglyoxal and glyoxal affect interleukin-8 secretion in intestinal cells by superoxide anion generation and activation of MAPK p38. Mol Nutr Food Res. 54(10):1458–1467.
  • Kurkjian CJ, Guo H, Montgomery ND, Cheng N, Yuan H, Merrill JR, Sempowski GD, Brickey WJ, Ting JY. 2017. The toll-like receptor 2/6 agonist, FSL-1 lipopeptide, therapeutically mitigates acute radiation syndrome. Sci Rep. 7(1):17355.
  • Leung W, Malkova A, Haber JE. 1997. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc Natl Acad Sci USA. 94(13):6851–6856.
  • Li J, Read LR, Baker MD. 2001. The mechanism of mammalian gene replacement is consistent with the formation of long regions of heteroduplex DNA associated with two crossing-over events. Mol Cell Biol. 21(2):501–510.
  • Likhacheva AS, Nikolin VP, Popova NA, Rogachev VA, Prokhorovich MA, Sebeleva TE, Bogachev SS, Shurdov MA. 2007. Exogenous DNA can be captured by stem cells and be involved in their rescue from death after lethal-dose γ-radiation. Gene Ther Mol Biol. 11(2):305–314.
  • Maréchal A, Zou L. 2013. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 5(9):a012716.
  • McDevitt S, Rusanov T, Kent T, Chandramouly G, Pomerantz RT. 2018. How RNA transcripts coordinate DNA recombination and repair. Nat Commun. 9(1):1091.
  • Meers C, Keskin H, Storici F. 2016. DNA repair by RNA: templated, or not templated, that is the question. DNA Repair. 44:17–21.
  • Metheetrairut C, Slack FJ. 2013. MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev. 23(1):12–19.
  • Miller TW, Soto-Pantoja DR, Schwartz AL, Sipes JM, DeGraff WG, Ridnour LA, Wink DA, Roberts DD. 2015. CD47 receptor globally regulates metabolic pathways that control resistance to ionizing radiation. J Biol Chem. 290(41):24858–24874.
  • Morgan WF. 2003a. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res. 159(5):567–580.2.0.CO;2]
  • Morgan WF. 2003b. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res. 159(5):581–596.
  • Nellimarla S, Mossman KL. 2014. Extracellular dsRNA: its function and mechanism of cellular uptake. J Interferon Cytokine Res. 34(6):419–426.
  • Neta R, Douches S, Oppenheim JJ. 1986. Interleukin 1 is a radioprotector. J Immunol. 136(7):2483–2485.
  • Neta R. 1988a. Cytokines in radioprotection and therapy of radiation injury. Biotherapy. 1(1):41–45.
  • Neta R. 1988b. Role of cytokines in radioprotection. Pharmacol Ther. 39(1–3):261–266.
  • Ozerov I, Eremin P, Osipov A, Eremin I, Tsvetkova A, Guseva S, Ky I, Gavrilenko O, Pustovalova M, Smetanina N, et al. 2014. Characteristics of changes in the number of yH2AX and Rad5l protein foci in human skin fibroblasts after prolonged exposure to low-dose rate X-ray radiation. Saratov J Med Sci Res. 10(4):739–743.
  • Patt HM, Tyree EB, Straube RL, Smith DE. 1949. Cysteine protection against X irradiation. Science. 110(2852):213–214.
  • Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A. 2013. Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol. 108(3):378–387.
  • Riehl T, Cohn S, Tessner T, Schloemann S, Stenson WF. 2000. Lipopolysaccharide is radioprotective in the mouse intestine through a prostaglandin-mediated mechanism. Gastroenterology. 118(6):1106–1116.
  • Rogakou EP, Boon C, Redon C, Bonner WM. 1999. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 146(5):905–915.
  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 273(10):5858–5868.
  • Sawada F, Irie M. 1981. Characterization of ribonuclease A irradiated with gamma-rays in the presence of cytidylic acid with respect to the interaction of the enzyme with folic acid. J Radiat Res. 22(3):367–372.
  • Sharma R, Kale RK. 1993. Effect of radiation on glyoxalase i and glyoxalase II activities in spleen and liver of mice. Int J Radiat Biol. 63(2):233–238.
  • Shemetun OV, Pilinska MA. 2019. Radiation-induced bystander effect - modeling, manifestation, mechanisms, persistence, cancer RISKS (literature review). Probl Radiac Med Radiobiol. 24:65–92.
  • Shrivastav M, De Haro LP, Nickoloff JA. 2008. Regulation of DNA double-strand break repair pathway choice. Cell Res. 18(1):134–147.
  • Shrivastav M, Miller CA, De Haro LP, Durant ST, Chen BPC, Chen DJ, Nickoloff JA. 2009. DNA-PKcs and ATM co-regulate DNA double-strand break repair. DNA Repair (Amst). 8(8):920–929.
  • Singh VK, Yadav VS. 2005. Role of cytokines and growth factors in radioprotection. Exp Mol Pathol. 78(2):156–169.
  • Storici F, Bebenek K, Kunkel TA, Gordenin DA, Resnick MA. 2007. RNA-templated DNA repair. Nature. 447(7142):338–341.
  • Symington LS. 2005. Focus on recombinational DNA repair. EMBO Rep. 6(6):512–517.
  • Takemura N, Kawasaki T, Kunisawa J, Sato S, Lamichhane A, Kobiyama K, Aoshi T, Ito J, Mizuguchi K, Karuppuchamy T, et al. 2014. Blockade of TLR3 protects mice from lethal radiation-induced gastrointestinal syndrome. Nat Commun. 5:3492.
  • Thapar R. 2018. Regulation of DNA double-strand break repair by non-coding RNAs. Molecules. 23(11):2789.
  • Thornalley PJ. 1996. Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification-a role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol. 27(4):565–573.
  • Vogin G, Foray N. 2013. The law of Bergonié and Tribondeau: a nice formula for a first approximation. Int J Radiat Biol. 89(1):2–8.
  • Von Holzen U, Pataer A, Raju U, Bocangel D, Vorburger SA, Liu Y, Lu X, Roth JA, Aggarwal BB, Barber GN, et al. 2007. The double-stranded RNA-activated protein kinase mediates radiation resistance in mouse embryo fibroblasts through nuclear factor kappaB and Akt activation. Clin Cancer Res. 13(20):6032–6039.
  • Walden TL, Farzaneh NK. 1995. Radioprotection by 16,16 dimethyl prostaglandin E2 is equally effective in male and female mice. J Radiat Res. 36(1):1–7.
  • Walden TL, Patchen M, Snyder SL. 1987. 16,16-Dimethyl prostaglandin E2 increases survival in mice following irradiation. Radiat Res. 109(3):440–448.
  • Wang Y, Xu C, Du LQ, Cao J, Liu JX, Su X, Zhao H, Fan FY, Wang B, Katsube T, et al. 2013. Evaluation of the comet assay for assessing the dose-response relationship of DNA damage induced by ionizing radiation. Int J Mol Sci. 14(11):22449–22461.
  • Ward JF. 1988. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 35(C):95–125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.