3,973
Views
6
CrossRef citations to date
0
Altmetric
Reviews

A review of the impact on the ecosystem after ionizing irradiation: wildlife population

&
Pages 1054-1062 | Received 11 Mar 2020, Accepted 16 Jun 2020, Published online: 24 Jul 2020

References

  • Aliyu AS, Ramli AT, Garba NN, Saleh MA, Gabdo HT, Liman MS. 2015. Fukushima nuclear accident: preliminary assessment of the risks to non-human biota. Radiat Prot Dosimetry. 163(2):238–250.
  • Arkhipov NP, Kuchma ND, Askbrant S, Pasternak PS, Musica VV. 1994. Acute and long-term effects of irradiation on pine (Pinus silvestris) strands post-Chernobyl. Sci Total Environ. 157(1-3):383–386.
  • Baum ED, Knox HD, Miller TR. 2002. Nuclides and isotopes: chart of the nuclides. 16th ed. Schenectady, New York: Knolls Atomic Power Laboratory, Inc.
  • Beasley DE, Bonisoli-Alquati A, Welch SM, Moller AP, Mousseau TA. 2012. Effects of parental radiation exposure on developmental instability in grasshoppers. J Evol Biol. 25(6):1149–1162.
  • Bonisoli-Alquati A, Ostermiller S, Beasley AE, Welch SM, Moller AP, Mousseau TA. 2018. Faster development covaries with higher DNA damage in grasshoppers (Chorthippus albomarginatus) from chernobyl. Physiol Biochem Zool. 91(2):776–787.
  • Boratyński Z, Arias JM, Garcia C, Mappes T, Mousseau TA, Møller AP, Pajares AJM, Piwczyński M, Tukalenko E. 2016. Ionizing radiation from Chernobyl affects development of wild carrot plants. Sci Rep. 6:39282.
  • Boubriak II, Grodzinsky DM, Polischuk VP, Naumenko VD, Gushcha NP, Micheev AN, McCready SJ, Osborne DJ. 2008. Adaptation and impairment of DNA repair function in pollen of Betula verrucosa and seeds of Oenothera biennis from differently radionuclide-contaminated sites of Chernobyl. Ann Bot. 101(2):267–276.
  • Bréchignac F, Oughton D, Mays C, Barnthouse L, Beasley JC, Bonisoli-Alquati A, Bradshaw C, Brown J, Dray S, Geras'kin S, et al. 2016. Addressing ecological effects of radiation on populations and ecosystems to improve protection of the environment against radiation: Agreed statements from a Consensus Symposium. J Environ Radioact. 158–159:21–29.
  • Bujold K, Hauer-Jensen M, Donini O, Rumage A, Hartman D, Hendrickson HP, Stamatopoulos J, Naraghi H, Pouliot M, Ascah A, et al. 2016. Citrulline as a biomarker for gastrointestinal-acute radiation syndrome: species differences and experimental condition effects. Radiat Res. 186(1):71–78.
  • Copplestone D, Hingston J, Real A. 2008. The development and purpose of the FREDERICA radiation effects database. J Environ Radioact. 99(9):1456–1463.
  • Danchenko M, Skultety L, Rashydov NM, Berezhna VV, Mátel L, Salaj T, Pret’ová A, Hajduch M, 2009. Proteomic analysis of mature soybean seeds from the Chernobyl area suggests plant adaptation to the contaminated environment. J Proteome Res. 8(6):2915–2922.
  • Doctrow SR, Lopez A, Schock AM, Duncan NE, Jourdan MM, Olasz EB, Moulder JE, Fish BL, Mader M, Lazar J, et al. 2013. A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin. J Invest Dermatol. 133(4):1088–1096.
  • Evans EP, Breckon G, Ford CE. 1964. An air-drying method for meiotic preparations from mammalian testes. Cytogenetics. 3:289–294.
  • Fuller N, Smith JT, Ford AT. 2019. Impacts of ionising radiation on sperm quality, DNA integrity and post-fertilisation development in marine and freshwater crustaceans. Ecotoxicol Environ Saf. 186:109764.
  • Garnier-Laplace J, Geras'kin S, Della-Vedova C, Beaugelin-Seiller K, Hinton TG, Real A, Oudalova A. 2013. Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. J Environ Radioact. 121:12–21.
  • Galván I, Bonisoli-Alquati A, Jenkinson S, Ghanem G, Wakamatsu K, Mousseau TA, Møller AP. 2014. Chronic exposure to low-dose radiation at Chernobyl favours adaptation to oxidative stress in birds. Funct Ecol. 28(6):1387–1403.
  • Georgieva M, Rashydov NM, Hajduch M. 2017. DNA damage, repair monitoring and epigenetic DNA methylation changes in seedlings of Chernobyl soybeans. DNA Repair (Amst). 50:14–21.
  • Geras'kin S, Oudalova A, Dikareva N, Spiridonov S, Hinton T, Chernonog E, Garnier-Laplace J. 2011. Effects of radioactive contamination on Scots pines in the remote period after the Chernobyl accident. Ecotoxicology. 20(6):1195–1208.
  • Grigorkina E, Olenev G. 2009. Radioadaptation of rodents in the zone of local radioactive contamination (Kyshtim Accident, Russia): 50 Years on. Radioprotection. 44(5):129–134.
  • Hancock S, Vo NTK, Byun SH, Zainullin VG, Seymour CB, Mothersill C. 2019. Effects of historic radiation dose on the frequency of sex-linked recessive lethals in Drosophila populations following the Chernobyl nuclear accident. Environ Res. 172:333–337.
  • Hegge SR, King GL. 2017. Radiation dose-rate effects on select biomarkers in a mouse total-body irradiation model. Radiat Appl. 2(3):158–163.
  • Hei TK, Zhou H, Chai Y, Ponnaiya B, Ivanov VN. 2011. Radiation induced non-targeted response: mechanism and potential clinical implications. Curr Mol Pharmacol. 4(2):96–105.
  • Hiyama A, Nohara C, Kinjo S, Taira W, Gima S, Tanahara A, Otaki JM. 2012. The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Sci Rep. 2:570.
  • Hiyama A, Taira W, Nohara C, Iwasaki M, Kinjo S, Iwata M, Otaki JM. 2015. Spatiotemporal abnormality dynamics of the pale grass blue butterfly: three years of monitoring (2011-2013) after the Fukushima nuclear accident. BMC Evol Biol. 15:15
  • Imanaka T, Hayashi G, Endo S. 2015. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1. J Radiat Res. 56(Suppl 1):i56–61.
  • Itoh M, Kajihara R, Kato Y, Takano-Shimizu T, Inoue Y. 2018. Frequencies of chromosomal inversions in Drosophila melanogaster in Fukushima after the nuclear power plant accident. PLoS One. 13(2):e0192096.
  • Kiang JG, Jiao W, Cary LH, Mog SR, Elliott TB, Pellmar TC, Ledney GD. 2010. Wound trauma increases radiation-induced mortality by activation of iNOS pathway and elevation of cytokine concentrations and bacterial infection [Research Support, N.I.H., Extramural]. Radiat Res. 173(3):319–332.
  • Kiang JG, Olabisi AO. 2019. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 9:25.
  • Kiang JG, Smith JT, Anderson MN, Umali MV, Ho C, Zhai M, Lin B, Jiang S. 2019. A novel therapy, using Ghrelin with pegylated G-CSF, inhibits brain hemorrhage from ionizing radiation or combined radiation injury [Research]. PPIJ. 7(3):133–145.
  • Kiang JG, Smith JT, Cannon G, Anderson MN, Ho C, Zhai M, Cui W, Xiao M. 2020. Ghrelin, a novel therapy, corrects cytokine and NF-κB-AKT-MAPK network and mitigates intestinal injury induced by combined radiation and skin-wound trauma. Cell Biosci. 10:63.
  • Kiang JG, Smith JT, Hegge SR, Ossetrova NI. 2018. Circulating cytokine/chemokine concentrations respond to ionizing radiation doses but not radiation dose rates: granulocyte-colony stimulating factor and interleukin-18. Radiat Res. 189(6):634–643.
  • Klubicova K, Danchenko M, Skultety L, Berezhna VV, Uvackova L, Rashydov NM, Hajduch M. 2012. Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism. PLoS One. 7(10):e48169
  • Klubicova K, Danchenko M, Skultety L, Miernyk JA, Rashydov NM, Berezhna VV, Pret'ova A, Hajduch M. 2010. Proteomics analysis of flax grown in Chernobyl area suggests limited effect of contaminated environment on seed proteome. Environ Sci Technol. 44(18):6940–6946.
  • Kodama K, Aramaki T, Horiguchi T. 2018. Current status of the megabenthic community in coastal Fukushima Prefecture, Japan, in the wake of the Great East Japan Earthquake. Mar Environ Res. 140:358–374.
  • Koval L, Proshkina E, Shaposhnikov M, Moskalev A. 2020. The role of DNA repair genes in radiation-induced adaptive response in Drosophila melanogaster is differential and conditional. Biogerontology. 21(1):45–56.
  • Kovalchuk I, Abramov V, Pogribny I, Kovalchuk O. 2004. Molecular aspects of plant adaptation to life in the Chernobyl zone. Plant Physiol. 135(1):357–363.
  • Kovalchuk O, Burke P, Arkhipov A, Kuchma N, James SJ, Kovalchuk I, Pogribny I. 2003. Genome hypermethylation in Pinus silvestris of Chernobyl--a mechanism for radiation adaptation? Mutat Res. 529(1-2):13–20.
  • Kuchma O, Finkeldey R. 2011. Evidence for selection in response to radiation exposure: Pinus sylvestris in the Chernobyl exclusion zone. Environ Pollut. 159(6):1606–1612.
  • Krivolutzkii DA, Pokarzhevskii AD. 1992. Effects of radioactive fallout on soil animal populations in the 30 km zone of the Chernobyl atomic power station. Sci Total Environ. 112(1):69–77.
  • Laskowski L, Williams D, Seymour C, Mothersill C. 2020. Environmental and industrial developments in radiation cataractogenesis. Int J Radiat Biol. 1–33. DOI:10.1080/09553002.2020.1767820
  • Lerebours A, Gudkov D, Nagorskaya L, Kaglyan A, Rizewski V, Leshchenko A, Bailey EH, Bakir A, Ovsyanikova S, Laptev G, et al. 2018. Impact of environmental radiation on the health and reproductive status of fish from Chernobyl. Environ Sci Technol. 52(16):9442–9450.
  • Moller AP, Barnier F, Mousseau TA. 2012. Ecosystems effects 25 years after Chernobyl: pollinators, fruit set and recruitment. Oecologia. 170(4):1155–1165.
  • Moller AP, Mousseau TA. 2007. Birds prefer to breed in sites with low radioactivity in Chernobyl. Proc Biol Sci. 274(1616):1443–1448.
  • Moller AP, Mousseau TA. 2009. Reduced abundance of insects and spiders linked to radiation at Chernobyl 20 years after the accident. Biol Lett. 5(3):356–359.
  • Moller AP, Nishiumi I, Mousseau TA. 2015. Cumulative effects of radioactivity from Fukushimaon the abundance and biodiversity of birds. J Ornithol. 156(S1):297–S305.
  • Morozova V, Kashparova E, Levchuk S, Bishchuk Y, Kashparov V. 2020. The progeny of Chernobyl Arabidopsis thaliana plants does not exhibit changes in morphometric parameters and cellular antioxidant defence system of shoots. J Environ Radioact. 211:106076
  • Mustonen V, Kesaniemi J, Lavrinienko A, Tukalenko E, Mappes T, Watts PC, Jurvansuu J. 2018. Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses. BMC Cell Biol. 19(1):17
  • Murat El Houdigui S, Adam-Guillermin C, Loro G, Arcanjo C, Frelon S, Floriani M, Dubourg N, Baudelet E, Audebert S, Camoin L, et al. 2019. A systems biology approach reveals neuronal and muscle developmental defects after chronic exposure to ionising radiation in zebrafish. Sci Rep. 9(1):20241.
  • Nakamura AJ, Suzuki M, Redon CE, Kuwahara Y, Yamashiro H, Abe Y, Takahashi S, Fukuda T, Isogai E, Bonner WM, et al. 2017. The causal relationship between DNA damage induction in bovine lymphocytes and the fukushima nuclear power plant accident. Radiat Res. 187(5):630–636.
  • Ojima M, Hirouchi T, Etani R, Ariyoshi K, Fujishima Y, Kai M. 2019. Dose-rate-dependent PU.1 inactivation to develop acute myeloid leukemia in mice through persistent stem cell proliferation after acute or chronic gamma irradiation. Radiat Res. 192(6):612–620.
  • Ossetrova NI, Stanton P, Krasnopolsky K, Ismail M, Doreswamy A, Hieber KP. 2018a. Biomarkers for radiation biodosimetry and injury assessment after mixed-field (neutron and gamma) radiation in the mouse total-body irradiation model. Health Phys. 115(6):727–742.
  • Ossetrova NI, Stanton P, Krasnopolsky K, Ismail M, Doreswamy A, Hieber KP. 2018b. Comparison of biodosimetry biomakers for radiation dose and injury assessment after mixed-field (neutron and gamma) and pure gamma radiation in the mouse total body irradiation model. Health Phys. 115(6):743–759.
  • Overbey EG, Paul AM, da Silveira WA, Tahimic CGT, Reinsch SS, Szewczyk N, Stanbouly S, Wang C, Galazka JM, Mao XW. 2019. Mice exposed to combined chronic low-dose irradiation and modeled microgravity develop long-term neurological sequelae. Int J Mol Sci. 20(17):4094.
  • Pomerantseva MD, Ramaiya LK, Chekhovich AV. 1997. Genetic disorders in house mouse germ cells after the Chernobyl catastrophe. Mutat Res. 381(1):97–103.
  • Proctor M, Yeo PF, Lack AJ. 1996. Natural history of pollination. Portland, OR: Timber Press.
  • Rothkamm K, Lobrich M. 2003. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA. 100(9):5057–5062.
  • Rasina LN, Grigorkina EB, Orekhova NA. 2017. Adaptation of small mammals to radiocontaminated environment: Oxidative metabolism and radioresistance. Dokl Biochem Biophys. 476(1):340–343.
  • Shevchenko VA, Pomerantseva MD, Ramaiya LK, Chekhovich AV, Testov BV. 1992. Genetic disorders in mice exposed to radiation in the vicinity of the Chernobyl nuclear power station. Sci Total Environ. 112(1):45–56.
  • Shuryak I. 2020. Review of resistance to chronic ionizing radiation exposure under environmental conditions in multicellular organisms. J Environ Radioact. 212:106128.
  • Shestopalov VM. 1996. Atlas of Chernobyl exclusion zone. Ukrainian Academy of Science, Kiev, Ukraine.
  • Snyder WE, Wise DH. 2001. Contrasting trophic cascades generated by a community of generalist predators. Ecology. 82(6):1571–1583
  • Taira W, Hiyama A, Nohara C, Sakauchi K, Otaki JM. 2015. Ingestional and transgenerational effects of the Fukushima nuclear accident on the pale grass blue butterfly. J Radiat Res. 56(Suppl 1):i2–18.
  • Takino S, Yamashiro H, Sugano Y, Fujishima Y, Nakata A, Kasai K, Hayashi G, Urushihara Y, Suzuki M, Shinoda H, et al. 2017. Analysis of the Effect of Chronic and Low-Dose Radiation Exposure on Spermatogenic Cells of Male Large Japanese Field Mice ( Apodemus speciosus ) after the Fukushima Daiichi Nuclear Power Plant Accident. Radiat Res. 187(2):161–168.
  • UNSCEAR 2011. Sources and effects of ionizing radiation: UNSCEAR 2008 report to the General Assembly. New York, NY: United Nations. p. 45–219.
  • Urushihara Y, Suzuki T, Shimizu Y, Ohtaki M, Kuwahara Y, Suzuki M, Uno T, Fujita S, Saito A, Yamashiro H, et al. 2018. Haematological analysis of Japanese macaques (Macaca fuscata) in the area affected by the Fukushima Daiichi Nuclear Power Plant accident. Sci Rep. 8(1):16748.
  • Voitsekhovych OV, Kanivets V, Onishi Y. 2007. The Chernobyl accident and its aquatic impacts on the surrounding area. In: Onishi Y, Voitsekhovych OV, Zheleznyak V, editors. Chernobyl – What have we learned? Dordrecht, the Netherlands: Springer. p. 9–47.
  • Volkova PY, Geras'kin SA, Kazakova EA. 2017. Radiation exposure in the remote period after the Chernobyl accident caused oxidative stress and genetic effects in Scots pine populations. Sci Rep. 7:43009
  • Wang Z, Yang WL, Jacob A, Aziz M, Wang P. 2015. Human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats. PLoS One. 10(2):e0118213
  • Williams JP, Brown SL, Georges GE, Hauer-Jensen M, Hill RP, Huser AK, Kirsch DG, Macvittie TJ, Mason KA, Medhora MM, et al. 2010. Animal models for medical countermeasures to radiation exposure. Radiat Res. 173(4):557–578.
  • Wise DH. 1993. Spiders in ecological webs. New York, NY: Cambridge University Press.
  • Wong K, Chang PY, Fielden M, Downey AM, Bunin D, Bakke J, Gahagen J, Iyer L, Doshi S, Wierzbicki W, et al. 2020. Pharmacodynamics of romiplostim alone and in combination with pegfilgrastim on acute radiation-induced thrombocytopenia and neutropenia in non-human primates. Int J Radiat Biol. 96(1):155–166.