234
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Environmental radiobiology of amphibians – knowledge gaps to be filled using cell lines

ORCID Icon
Pages 1034-1046 | Received 30 Sep 2020, Accepted 21 Dec 2020, Published online: 21 Jan 2021

References

  • Alton LA, Franklin CE. 2017. Drivers of amphibian declines: effects of ultraviolet radiation and interactions with other environmental factors. Clim Change Responses. 4:6.
  • Audette-Stuart M, Kim SB, McMullin D, Festarini A, Yankovich TL, Carr J, Mulpuru S. 2011. Adaptive response in frogs chronically exposed to low doses of ionizing radiation in the environment. J Environ Radioact. 102(6):566–573.
  • Audette-Stuart M, Yankovich T. 2011. Bystander effects in bullfrog tadpoles. Radioprotection. 46(6):S497–S502.
  • Azzam EI, de Toledo SM, Little JB. 2001. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha-particle irradiated to nonirradiated cells . Proc Natl Acad Sci U S A. 98(2):473–478.
  • Barber R, Plumb MA, Boulton E, Roux I, Dubrova YE. 2002. Elevated mutation rates in the germ line of first- and second-generation offspring of irradiated male mice. Proc Natl Acad Sci U S A. 99(10):6877–6882.
  • Bensaad K, Rouillard D, Soussi T. 2001. Regulation of the cell cycle by p53 after DNA damage in an amphibian cell line. Oncogene. 20(29):3766–3775.
  • Beresford NA, Barnett CL, Gashchak S, Maksimenko A, Guliaichenko E, Wood MD, Izquierdo M. 2020. Radionuclide transfer to wildlife at a 'Reference site' in the Chernobyl Exclusion Zone and resultant radiation exposures. J Environ Radioact. 211:105661
  • Beresford NA, Barnett CL, Jones DG, Wood MD, Appleton JD, Breward N, Copplestone D. 2008. Background exposure rates of terrestrial wildlife in England and Wales. J Environ Radioact. 99(9):1430–1439.
  • Brunst VV. 1965. Effects of ionizing radiation on the development of amphibians. Q Rev Biol. 40:1–67.
  • Bui-Marinos MP, Varga JFA, Vo NTK, Bols NC, Katzenback BA. 2020. Xela DS2 and Xela VS2: two novel skin epithelial-like cell lines from adult African clawed frog (Xenopus laevis) and their response to an extracellular viral dsRNA analogue. Dev Comp Immunol. 112:103759
  • Canadian Nuclear Safety Commission (CNSC). 2009. Tritium releases and dose consequences in Canada in 2006. [accessed 2020 Sep 22]. https://nuclearsafety.gc.ca/pubs_catalogue/uploads/CNSC_Release_and_Dose_eng_rev2.pdf.
  • Chao CC, Rosenstein BS. 1984. Inhibition of the UV induction of sister-chromatid exchanges in ICR-2A frog cells by pretreatment with gamma-rays. Mutat Res. 139(1):35–39.
  • Cohen J, Vo NTK, Seymour CB, Mothersill CE. 2019. Parallel comparison of pre-conditioning and post-conditioning effects in human cancers and keratinocytes upon acute gamma irradiation. Int J Radiat Biol. 95(2):170–178.
  • Conger AD, Clinton JH. 1973. Nuclear volumes, DNA contents, and radiosensitivity in whole-body-irradiated amphibians. Radiat Res. 54(1):69–101.
  • Corcoran JP, Ferretti P. 1999. RA regulation of keratin expression and myogenesis suggests different ways of regenerating muscle in adult amphibian limbs. J Cell Sci. 112(Pt 9):1385–1394.
  • Curtis TM, Collins AM, Gerlach BD, Brennan LM, Widder MW, van der Schalie WH, Vo NTK, Bols NC. 2013. Suitability of invertebrate and vertebrate cells in a portable impedance-based toxicity sensor: temperature mediated impacts on long-term survival. Toxicol In Vitro. 27(7):2061–2066.
  • Curtis JJ, Seymour CB, Mothersill CE. 2018. Cell line-specific direct irradiation and bystander responses are influenced by fetal bovine serum serotonin concentrations. Radiat Res. 190(3):262–270.
  • Curtis JJ, Vo NTK, Seymour CB, Mothersill CE. 2020a. 5-HT2A and 5-HT3 receptors contribute to the exacerbation of targeted and non-targeted effects of ionizing radiation-induced cell death in human colon carcinoma cells. Int J Radiat Biol. 96(4):482–490.
  • Curtis JJ, Vo NTK, Seymour CB, Mothersill CE. 2020b. Serotonin and 5-HT3 receptors sensitize human skin cells to direct irradiation cell death but not to soluble radiation-induced bystander signals. Environ Res. 180:108807.
  • Du Pasquier L, Robert J. 1992. In vitro growth of thymic tumor cell lines from Xenopus. Dev Immunol. 2(4):295–307.
  • Ferretti P, Brockes JP. 1988. Culture of newt cells from different tissues and their expression of a regeneration-associated antigen. J Exp Zool. 247(1):77–91.
  • Freed JJ, Hoess RH, Angelosanto FA, Massey HC. Jr. 1979. Survival and DNA repair in ultraviolet-irradiated haploid and diploid cultured frog cells. Mutat Res. 62(2):325–339.
  • Freed JJ, Mezger-Freed L, Schatz S. 1969. Characteristics of cell lines from haploid and diploid Rana pipiens embryos. In: Mizell M, editor. Biology of amphibian tumors. New York: Springer-Verlag New York Inc. p. 101–111.
  • Fuma S, Soeda H, Ihara S, Matsui K, Kawaguchi I, Ishikawa T, Kubota Y, Watanabe Y, Aono T. 2019. Effects of chronic γ-irradiation on growth and sexual maturation of the Tohoku hynobiid salamander, Hynobius lichenatus. J Environ Radioact. 196:98–103.
  • Fuma S, Une Y, Ihara S, Matsui K, Kudo T, Tokiwa T, Kubota Y, Soeda H, Ishikawa T, Doi K, et al. 2014. Effects of chronic γ-irradiation on growth and survival of the Tohoku hynobiid salamander, Hynobius lichenatus. J Environ Radioact. 135:84–92.
  • Gan Z, Chen SN, Huang B, Hou J, Nie P. 2017. Intronless and intron-containing type I IFN genes coexist in amphibian Xenopus tropicalis: Insights into the origin and evolution of type I IFNs in vertebrates. Dev Comp Immunol. 67:166–176.
  • Garnier-Laplace J, Geras'kin S, Della-Vedova C, Beaugelin-Seiller K, Hinton TG, Real A, Oudalova A. 2013. Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. J Environ Radioact. 121:12–21.
  • Gaschak SP, Maklyuk YA, Maksimenko AM, Bondarkov MD. 2009. Radioecology of amphibians in Chernobyl zone. Probl Chernobyl Exclusion Zone. 9:76–86.
  • Giraudeau M, Bonzom JM, Ducatez S, Beaugelin-Seiller K, Deviche P, Lengagne T, Cavalie I, Camilleri V, Adam-Guillermin C, McGraw KJ. 2018. Carotenoid distribution in wild Japanese tree frogs (Hyla japonica) exposed to ionizing radiation in Fukushima. Sci Rep. 8(1):7438
  • Gombeau K, Bonzom J-M, Cavalié I, Camilleri V, Orjollet D, Dubourg N, Beaugelin-Seiller K, Bourdineaud J-P, Lengagne T, Armant O, et al. 2020. Dose-dependent genomic DNA hypermethylation and mitochondrial DNA damage in Japanese tree frogs sampled in the Fukushima Daiichi area. J Environ Radioact. 225:106429
  • Griggs HG, Bender MA. 1972. Ultraviolet and gamma-ray induced reproductive death and photoreactivation in a Xenopus tissue culture cell line. Photochem Photobiol. 15(6):517–526.
  • Hall EJ. Giaccia AJ. 2006. Radiobiology for the radiologist. 6th ed. Philadelphia: Lippincott Williams & Wilkins.
  • Hancock S, Vo NTK, Byun SH, Zainullin VG, Seymour CB, Mothersill CE. 2019. Effects of historic radiation dose on the frequency of sex-linked recessive lethals in Drosophila populations following the Chernobyl nuclear accident. Environ Res. 172:333–337.
  • Hancock S, Vo NTK, Goncharova RI, Seymour CB, Byun SH, Mothersill CE. 2020. One-decade-spanning transgenerational effects of historic radiation dose in wild populations of bank voles exposed to radioactive contamination following the Chernobyl nuclear disaster. Environ Res. 180:108816
  • Hancock S, Vo NTK, Omar-Nazir L, Batlle JVI, Otaki JM, Hiyama A, Byun SH, Seymour CB, Mothersill C. 2019. Transgenerational effects of historic radiation dose in pale grass blue butterflies around Fukushima following the Fukushima Dai-ichi nuclear power plant meltdown accident. Environ Res. 168:230–240.
  • Hollstein M, Sidransky D, Vogelstein B, Harris CC. 1991. p53 mutations in human cancers. Science. 253(5015):49–53.
  • Hosseini A, Beresford NA, Brown JE, Jones DG, Phaneuf M, Thørring H, Yankovich T. 2010. Background dose-rates to reference animals and plants arising from exposure to naturally occurring radionuclides in aquatic environments. J Radiol Prot. 30(2):235–264.
  • Hurem S, Martín LM, Lindeman L, Brede DA, Salbu B, Lyche JL, Aleström P, Kamstra JH. 2018. Parental exposure to gamma radiation causes progressively altered transcriptomes linked to adverse effects in zebrafish offspring. Environ Pollut. 234:855–863.
  • International Commission of Radiological Protection (ICRP). 2008. Environmental protection: the concept and use of Reference Animals and Plants. ICRP Publication 108. Ann. ICRP. 38(:4–6.
  • International Union for Conservation of Nature and Natural Resources (IUCN). 2020. The IUCN Red List of Threatened Species. Version 2020-1. Table 1a “Number of species evaluated in relation to the overall number of described species, and numbers of threatened species by major groups of organisms.” [accessed 2020 May 24]. https://www.iucnredlist.org/resources/summary-statistics#Summary%20Tables.
  • Ishii Y, Matsuzaki SS, Hayashi S. 2020. Different factors determine 137Cs concentration factors of freshwater fish and aquatic organisms in lake and river ecosystems. J Environ Radioact. 213:106102
  • Johnson RO, Tittle TV, Sefchick MP, Zettergren LD, Ruben LN, Clothier RH, Balls M. 2013. Comparative studies of apoptosis in Xenopus laevis and mouse thymoma cell lines. Altern Lab Anim. 41(3):211–218.
  • Kamstra JH, Hurem S, Martin LM, Lindeman LC, Legler J, Oughton D, Salbu B, Brede DA, Lyche JL, Aleström P. 2018. Ionizing radiation induces transgenerational effects of DNA methylation in zebrafish. Sci Rep. 8(1):15373
  • Koubourli DV, Yaparla A, Popovic M, Grayfer L. 2018. Amphibian (Xenopus laevis) Interleukin-8 (CXCL8): a perspective on the evolutionary divergence of granulocyte chemotaxis. Front Immunol. 9:2058
  • Le M, Fernandez-Palomo C, McNeill FE, Seymour CB, Rainbow AJ, Mothersill CE. 2017. Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: reconciling the mechanisms mediating the bystander effect. PLoS One. 12(3):e0173685
  • Lee JM, Bernstein A. 1993. p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci U S A. 90(12):5742–5746.
  • Lips KR. 2016. Overview of chytrid emergence and impacts on amphibians. Phil Trans R Soc B. 371(1709):20150465.
  • Liu J, Ma T, Liu Y, Zou J, Gao M, Zhang R, Wu J, Liu S, Xie H. 2018. History, advancements, and perspective of biological research in deep-underground laboratories: a brief review. Environ Int. 120:207–214.
  • Lyng FM, Seymour CB, Mothersill C. 2002. Initiation of apoptosis in cells exposed to medium from the progeny of irradiated cells: a possible mechanism for bystander-induced genomic instability? Radiat Res. 157(4):365–370.
  • Matsushima N, Ihara S, Takase M, Horiguchi T. 2015. Assessment of radiocesium contamination in frogs 18 months after the Fukushima Daiichi nuclear disaster. Sci Rep. 5:9712
  • Møller AP, Mousseau TA. 2013. The effects of natural variation in background radioactivity on humans, animals and other organisms. Biol Rev Camb Philos Soc. 88(1):226–254.
  • Mothersill C, Bristow RG, Harding SM, Smith RW, Mersov A, Seymour CB. 2011. A role for p53 in the response of bystander cells to receipt of medium borne signals from irradiated cells. Int J Radiat Biol. 87(11):1120–1125.
  • Mothersill C, Bucking C, Smith RW, Agnihotri N, Oneill A, Kilemade M, Seymour CB. 2006. Communication of radiation-induced stress or bystander signals between fish in vivo. Environ Sci Technol. 40(21):6859–6864.
  • Mothersill CE, Oughton DH, Schofield PN, Abend M, Adam-Guillermin C, Ariyoshi K, Beresford NA, Bonisoli-Alquati A, Cohen J, Dubrova Y. 2020. From tangled banks to toxic bunnies; a reflection on the issues involved in developing an ecosystem approach for environmental radiation protection. Int J Radiat Biol. DOI: 10.1080/09553002.2020.1793022.
  • Mothersill C, Rusin A, Seymour C. 2017. Low doses and non-targeted effects in environmental radiation protection; where are we now and where should we go? Environ Res. 159:484–490.
  • Mothersill C, Seymour C. 1997. Lethal mutations and genomic instability. Int J Radiat Biol. 71(6):751–758.
  • Mothersill C, Seymour C. 2014. Implications for human and environmental health of low doses of ionising radiation. J Environ Radioact. 133:5–9.
  • Murley J, Miller R, Weichselbaum R, Grdina D. 2017. TP53 mutational status and ROS effect the expression of the survivin-associated radio-adaptive response. Radiat Res. 188(5):659–670.
  • Park SC, Lee SH, Han SS. 2000. Establishment of a phagocytic cell line from Bombina orientalis. Methods Cell Sci. 22(1):1–7.
  • Rafferty KA. Jr. 1965. The cultivation of inclusion-associated viruses from Lucké tumor frogs. Ann N Y Acad Sci. 126(1):3–21.
  • Rafferty KA. Jr. 1969. Mass culture of amphibian cells: methods and observations concerning stability of cell type. In: Mizell M, editor. Biology of Amphibian tumors. Berlin: Springer-Verlag. p. 52–81.
  • Reese DH, Yamada T, Moret R. 1976. An established cell line from the newt Notophthalmus viridescens. Differentiation. 6(2):75–81.
  • Ribeiro JC, Barnetson AR, Fisher RJ, Mameghan H, Russell PJ. 1997. Relationship between radiation response and p53 status in human bladder cancer cells. Int J Radiat Biol. 72(1):11–20.
  • Robert J, Cohen N. 1998. Evolution of immune surveillance and tumor immunity: studies in Xenopus. Immunol Rev. 166:231–243.
  • Robertson K, Hensey C, Gautier J. 1999. Isolation and characterization of Xenopus ATM (X-ATM): expression, localization, and complex formation during oogenesis and early development. Oncogene. 18(50):7070–7079.
  • Rosenstein BS, Setlow RB. 1980. Photoreactivation of ICR 2A frog cells after exposure to monochromatic ultraviolet radiation in the 252-313 nm range. Photochem Photobiol. 32(3):361–366.
  • Roy S, Gardiner DM, Bryant SV. 2000. Vaccinia as a tool for functional analysis in regenerating limbs: ectopic expression of SHH. Dev Biol. 218(2):199–205.
  • Ruben LN, Clothier RH, Balls M. 2007. Cancer resistance in amphibians. Altern Lab Anim. 35(5):463–470.
  • Saroya R, Smith R, Seymour C, Mothersill C. 2009. Injection of resperpine into zebrafish, prevents fish to fish communication of radiation-induced bystander signals: confirmation in vivo of a role for serotonin in the mechanism. Dose Response. 8(3):317–330.
  • Seymour CB, Mothersill C, Alper T. 1986. High yields of lethal mutations in somatic mammalian cells that survive ionizing radiation. Int J Radiat Biol Relat Stud Phys Chem Med. 50(1):167–179.
  • Shechter D, Chitta RK, Xiao A, Shabanowitz J, Hunt DF, Allis CD. 2009. A distinct H2A.X isoform is enriched in Xenopus laevis eggs and early embryos and is phosphorylated in the absence of a checkpoint. Proc Natl Acad Sci U S A. 106(3):749–754.  
  • Shi X, Seymour C, Mothersill C. 2018. Change of cell growth and mitochondrial membrane polarization in the progeny of cells surviving low-dose high-LET irradiation from Ra-226. Environ Res. 167:51–65.
  • Smith RW, Seymour CB, Mothersill CE. 2013. Short and long term bystander effect induction by fathead minnows (Pimephales promelas, Rafinesque, 1820) injected with environmentally relevant whole body doses of 226Ra. J Environ Radioact. 126:133–136.
  • Stark K. 2006. Risk from radionuclides: a frog’s perspective. Accumulation of 137Cs in a riparian wetland [Radiation doses, and effects on frogs and toads after low-dose rate exposure] [Doctoral thesis]. Stockholm University, Stockholm.
  • Stiewe T. 2007. The p53 family in differentiation and tumorigenesis. Nat Rev Cancer. 7(3):165–167.
  • Stuart SN, Hoffmann M, Chanson JS, Cox NA, Berridge RJ, Ramani P, Young BE, editors. 2008. Threatened Amphibians of the world. Barcelona: Lynx Edicions.
  • United States Nuclear Regulatory Commission (USNRC). 2016. Leaks and spills at U.S. commercial nuclear power plants. [accessed 2020 Sep 20]. https://www.nrc.gov/docs/ML1615/ML16154A745.pdf.
  • Uto K, Inoue D, Shimuta K, Nakajo N, Sagata N. 2004. Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism. Embo J. 23(16):3386–3396.
  • van Zeeland AA, Natarajan AT, Verdegaal-Immerzeel EA, Filon AR. 1980. Photoreactivation of UV induced cell killing, chromosome aberrations, sister chromatid exchanges, mutations and pyrimidine dimers in Xenopus laevis fibroblasts. Mol Gen Genet. 180(3):495–500.
  • Villiard E, Brinkmann H, Moiseeva O, Mallette FA, Ferbeyre G, Roy S. 2007. Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer. BMC Evol Biol. 7:180
  • Vinogradov AE, Chubinishvili AT. 1999. Genome reduction in a hemiclonal frog Rana esculenta from radioactively contaminated areas. Genetics. 151(3):1123–1125.
  • Vo NTK, Everson J, Moore L, DeWitte-Orr SJ. 2019. Class A scavenger receptor expression and function in eight novel tadpole cell lines from the green frog (Lithobates clamitans) and the wood frog (Lithobates sylvatica). Cytotechnology. 71(4):757–768.
  • Vo NTK, Guerreiro M, Yaparla A, Grayfer L, DeWitte-Orr SJ. 2019. Class A scavenger receptors are used by Frog Virus 3 during its cellular entry. Viruses. 11(2):93.
  • Vo NTK, Moore L, Leis E, DeWitte-Orr SJ. 2019. Class A scavenger receptors mediate extracellular dsRNA sensing, leading to downstream antiviral gene expression in a novel American toad cell line. BufoTad. Dev. Comp. Immunol. 92:140–149.
  • Vo NTK, Seymour CB, Mothersill CE. 2019a. The common field lampricide 3-trifluoromethyl-4-nitrophenol is a potential radiosensitizer in fish cells. Environ Res. 170:383–388.
  • Vo NTK, Seymour CB, Mothersill CE. 2019b. Radiobiological characteristics of descendant progeny of fish and amphibian cells that survive the initial ionizing radiation dose. Environ Res. 169:494–500.
  • Weinberg HS, Korol AB, Kirzhner VM, Avivi A, Fahima T, Nevo E, Shapiro S, Rennert G, Piatak O, Stepanova EI, et al. 2001. Very high mutation rate in offspring of Chernobyl accident liquidators. Proc Biol Sci. 268(1471):1001–1005.
  • Wertheim B, Beukeboom LW, van de Zande L. 2013. Polyploidy in animals: effects of gene expression on sex determination, evolution and ecology. Cytogenet Genome Res. 140(2–4):256–269.
  • Whicker FW, Schultz V. 1982. Radioecology: nuclear energy and the environment. Boca Raton (FL): CRC Press.
  • Williams RN, Bos DH, Gopurenko D, Dewoody JA. 2008. Amphibian malformations and inbreeding. Biol Lett. 4(5):549–552.
  • Wolf K, Quimby MC. 1964. Amphibian cell culture: permanent cell line from the bullfrog (Rana catesbeiana). Science. 144(3626):1578–1580.
  • Xu S, Ding N, Pei H, Hu W, Wei W, Zhang X, Zhou G, Wang J. 2014. MiR-21 is involved in radiation-induced bystander effects. RNA Biol. 11(9):1161–1170.
  • Xu S, Wang J, Ding N, Hu W, Zhang X, Wang B, Hua J, Wei W, Zhu Q. 2015. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA Biol. 12(12):1355–1363.
  • Yeliseeva K, Mikhalevich L, Kartel N. 1995. Cytogenetic effects of radiation from Chernobyl nuclear accident on humans and animals in the contaminated area of Belarus. Rev Int Contam Ambient. 11(Z):77–85.
  • Yun MH, Davaapil H, Brockes JP. 2015. Recurrent turnover of senescent cells during regeneration of a complex structure. Elife. 4:e05505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.