142
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Combined action of gamma radiation and exposure to copper ions on Lemna minor L

&
Pages 1120-1129 | Received 09 Oct 2020, Accepted 19 Feb 2021, Published online: 08 Mar 2021

References

  • Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH. 2007. Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere. 67:1182–1193.
  • Akram R, Natasha Fahad S, Hashmi MZ, Wahid A, Adnan M, Mubeen M, Khan N, Rehmani M, Awais M, Abbas M, et al. 2019. Trends of electronic waste pollution and its impact on the global environment and ecosystem. Environ Sci Pollut Res Int. 26:16923–16938.
  • Altenburger R, Greco WR. 2009. Extrapolation concepts for dealing with multiple contamination in environmental risk assessment. Integr Environ Assess Manag. 5:62–68.
  • Altenburger R, Scholze M, Busch W, Escher BI, Jakobs G, Krauss M, Krüger J, Neale PA, Ait-Aissa S, Almeida AC, et al. 2018. Mixture effects in samples of multiple contaminants – an inter-laboratory study with manifold bioassays. Environ Int. 114:95–106.
  • Backhaus T, Faust M, Scholze M, Gramatica P, Vighi M, Grimme LH. 2004. Joint algal toxicity of phenylurea herbicides is equally predictable by concentration addition and independent action. Environ Toxicol Chem. 23:258–264.
  • Baszynski T, Tukendorf A, Ruszkowska M, Skórzynska E, Maksymiec W. 1988. Characteristics of the photosynthetic apparatus of copper nontolerant spinach exposed to excess copper. J Plant Physiol. 132:708–713.
  • Beresford NA, Horemans N, Copplestone D, Raines KE, Orizaola G, Wood MD, Laanen P, Whitehead HC, Burrows JE, Tinsley MC, et al. 2020. Towards solving a scientific controversy – the effects of ionising radiation on the environment. J Environ Radioact. 211:106033.
  • Bijnsdorp I, Giovannetti E, Peters GJ. 2011. Analysis of drug interactions. Methods Mol Biol. 731:431–434.
  • Bodnar IS, Cheban EV, Zainullin VG. 2018. Features of the effect of copper and strontium ions on the laboratory culture of duckweed (Lemna minor L.). Princ Ecol. 2:3–21. Russian.
  • Bodnar IS, Yushkova EA, Zainullin VG. 2016. Influence γ-radiation on morphometric characteristics of duckweed (Lemna minor L.). Radiat Biol Radioecol. 56:617–622. Russian.
  • Breivik K, Armitage JM, Wania F, Sweetman AJ, Jones KC. 2016. Tracking the global distribution of persistent organic pollutants accounting for E-waste exports to developing regions. Environ Sci Technol. 50:798–805.
  • Chou TC. 2006. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 58:621–681.
  • Chou TC, Martin N. 2005. CompuSyn for drug combinations: PC software and user’s guide: a computer program for quantitation of synergism and antagonism in drug combinations, and the determination of IC50 and ED50 and LD50 values. Paramus (NJ): ComboSyn.
  • Ciscato M, Valcke R, Loven K, Clijsters H, Navari-Izzo F. 1997. Effects of in vivo copper treatment on the photosynthetic apparatus of two Triticum durum cultivars with different stress sensitivity. Physiol Plant. 100:901–908.
  • Creanga D, Mantale AM, Ecaterina F. 2005. The radiosensitivity of photosynthetic processes in young maize plants. Analele Ştiinţifice ale Universităţii “Al.I.Cuza”. Biofizică, Fizică medicală şi Fizica mediului. 1:81–86.
  • De Liguoro M, Riga A, Fariselli P. 2018. Synergistic toxicity of some sulfonamide mixtures on Daphnia magna. Ecotoxicol Environ Saf. 164:84–91.
  • Deshmukh PS, Banerjee BD, Abegaonkar MP, Megha K, Ahmed RS, Tripathi AK, Mediratta PK. 2013. Effect of low level microwave radiation exposure on cognitive function and oxidative stress in rats. Indian J Biochem Biophys. 50:114–119.
  • Dumont ER, Larue C, Pujol B, Lamaze T, Elger A. 2019. Environmental variations mediate duckweed (Lemna minor L.) sensitivity to copper exposure through phenotypic plasticity. Environ Sci Pollut Res Int. 26:14106–14115.
  • Fevrier L, Oughton D, Hinton TG. 2014. Strategic research agenda for radioecology – an updated version with stakeholder input. Star.
  • Gagnaire B, Adam-Guillermin Festarini A, Cavalie I, Della-Vedova C, Shultz C, Kim SB, Ilkert H, Dubois C, Walsh S, Farrow F, et al. 2017. Effects of in situ exposure to tritiated natural environments: a multi-biomarker approach using the fathead minnow, Pimephales promelas. Sci Total Environ. 599-600:597–611.
  • Garnier-Laplace J, Vandenhove H, Beresford N, Muikku M, Real A. 2018. COMET strongly supported the development and implementation of medium-term topical research roadmaps consistent with the ALLIANCE Strategic Research Agenda. J Radiol Prot. 38:164–174.
  • Garnier-Laplace J, Geras'kin S, Della-Vedova C, Beaugelin-Seiller K, Hinton TG, Real A, Oudalova A. 2013. Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. J Environ Radioact. 121:12–21.
  • Grodzinskii DM, Kolomiez KD, Gudkov IN, Kutlakhmedov YA, Bulakh AA. 1984. Formation of the radiobiological reaction of plants. Kiev: Nauka. Russian.
  • Gupta M, Cuypers A, Vangronsveld J, Clijsters H. 1999. Copper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiol Plant. 106:262–267.
  • Halliwell B, Gutteridge JMC. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 219:1–14.
  • Hashimoto H, Uragami C, Cogdell RJ. 2016. Carotenoids and Photosynthesis. Subcell Biochem. 79:111–141.
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochem and Biophys. 125:189–198.
  • ICRP [International Commission on Radiological Protection]. 2003. A framework for assessing the impact of ioni-zing radiation on non-human species. ICRP Publication 91. Ann IRCP. 33:201–226.
  • Kanzawa F, Saijo N. 1997. In vitro interaction between gemcitabine and other anticancer drugs using a novel three-dimensional model. Semin. Oncol. 24:8–16.
  • Kopittke PM, Dart PJ, Menzies NW. 2007. Toxic effects of low concentrations of Cu on nodulation of cowpea (Vigna unguiculata). Environ Pollut. 145:309–315.
  • Kryshev I, Sazykina T. 1998. Radioecological effects on aquatic organisms in the areas with high levels of radioactive contamination: environmental protection criteria. Radiar Prot Dosim. 75:187–191.
  • Küpper H, Kroneck PMH. 2005. Heavy metal uptake by plants and cyanobacteria. Met Ions Biol Syst. 44:97–144.
  • Küpper H, Šetlík I, Šetliková E, Ferimazova N, Spiller M, Küpper FC. 2003. Copper-induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation in Scenedesmus quadricauda. Funct Plant Biol. 30:1187–1196.
  • Landolt E. 1980. Key to the determination of taxa witnin the family of Lemnaceae. Zürich: Veroeffentlichungen des Geobotanischen Instituts der ETH, Stiftung Rübel.
  • Landolt E, Kandeler R. 1987. Biosystematic investigations in the family of duckweeds (Lemnaceae). The Family of Lemnaceae. Vol. 4. Zürich: Veroeffentlichungen Des Geobotanischen Instituts Der ETH, Stiftung Rübel.
  • Lichtenthaler HK. 1987. Chlorophylls and carotenoids; pigments of photosynthetic biomembranes. Method Enzymol. 148:350–382.
  • Lidon FC, Henriques FS. 1991. Limiting step in photosynthesis of rise plants treated with varying copper levels. J Plant Physiol. 138:115–118.
  • Lidon FC, Henriques FS. 1993. Changes in the thylakoid membrane polypeptide patterns triggered by excess Cu in rice. Photosynthetica. 28:109–117.
  • Lind OC, Oughton DH, Salbu B. 2019. The NMBU FIGARO low dose irradiation facility. Int J Radiat Biol. 95:76–81.
  • Ling APK, Ung YC, Hussein S, Harun AR, Tanaka A, Yoshihiro H. 2013. Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation. J Zhejiang Univ Sci B. 14:1132–1143.
  • Long SM, Reichenberg F, Lister LJ, Hankard PK, Townsend J, Mayer P, Wright J, Holmstrup M, Svendsen C, Spurgeon DJ. 2009. Combined chemical (fluoranthene) and drought effects on Lumbricus rubellus demonstrate the applicability of the independent action model for multiple stressor assessment. Environ Toxicol Chem. 28:629–636.
  • Luna CM, González CA, Trippi VS. 1994. Oxidative damage caused by excess of copper in oat leaves. PCP. 35:11–15.
  • Maksymiec W, Russa R, Urbanik-Sypniewska T, Baszynski T. 1994. Effect of excess Cu on the photosynthetic apparantus of runner bean leaves treated at two different growth stages. Physiol Plant. 91:715–721.
  • Marschner H. 1995. Mineral nutrition of higher plants. London (UK): Academic Press; p. 333–347.
  • Ministry of Emergencies of Ukraine. 2011. Twenty-five years Chornobyl after accident: safety for the future. National report of Ukraine. Kyiv: KIM.
  • Mothersill C, Smith RW, Heier LS, Teien HC, Lind OC, Land OC, Seymour CB, Oughton D, Salbu B. 2014. Radiation-induced bystander effects in the Atlantic salmon (Salmo salar L.) following mixed exposure to copper and aluminum combined with low-dose gamma radiation. Radiat Environ Biophys. 53:103–114.
  • [OECD] Organisation for Economic Co-operation and Development. 2006. Guidelines for the testing chemicals. Lemna sp. growth inhibition test. Paris: OECD.
  • Panou-Filotheou H, Bosabalidis AM, Karataglis S. 2001. Effects of copper toxicity on leaves of oregano (Origanum vulgare subsp. hirtum). Ann Bot. 88:207–214.
  • Pätsikkä E, Aro EM, Tyystjärvi E. 1998. Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo. Plant Physiol. 117:619–627.
  • Pätsikkä E, Kairavuo M, Sersen F, Aro EN, Tyystjärvi E. 2002. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol. 129:1359–1367.
  • Prasad MNV, Strazalka K. 1999. Impact of heavy metals on photosynthesis. In: Prasad MNV, Hagemeyer J, editors. Heavy metal stress in plants. Berlin: Springer; p. 117–178.
  • Quartacci MF, Pinzino C, Sgherri CLM, Dalla Vecchia F, Navari-Izzo F. 2000. Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiol Plantarum. 108:87–93.
  • Ramel F, Birtic S, Cuine S, Triantaphylides C, Ravanat JL, Havaux M. 2012. Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol. 158:1267–1278.
  • Saha P, Mishra D, Chakraborty A, Sudarshan M, Raychaudhuri SS. 2008. In vitro radiation induced alterations in heavy metals and metallothionein content in Plantago ovata Forsk. Biol Trace Elem Res. 124:251–261.
  • Saha P, Raychaudhuri SS, Chakraborty A, Sudarshan M. 2010. PIXE analysis of trace elements in relation to chlorophyll concentration in Plantago ovata Forsk. Appl Radiat Isot. 68:444–449.
  • Saleem MH, Fahad S, Khan SU, Din M, Ullah A, Sabagh AE, Hossain A, Llanes A, Liu L. 2020. Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environ Sci Pollut Res Int. 27:5211–5221.
  • Shadyro OI, Yurkova IL, Kisel MA. 2002. Radiation-induced peroxidation and fragmentation of lipids in a model membrane. Int J Radiat Biol. 78:211–217.
  • Singh BB. 1971. Effect of gamma-irradiation on chlorophyll content of maize leaves. Radiat Bot. 11:243–244.
  • Sisakht M, Darabian M, Mahmoodzadeh A, Bazi A, Shafiee SM, Mokarram P, Khoshdel Z. 2020. The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. Int J Radiat Biol. 96:561–576.
  • Skesters A, Zvagule T, Silova A, Rusakova N, Larmane L, Reste J, Eglite M, Rainsford KD, Callingham BA, Bake MA, et al. 2010. Biochemical observations relating to oxidant stress injury in Chernobyl clean-up workers (“liquidators”) from Latvia. Inflammopharmacology. 18:17–23.
  • Sree KS, Bog M, Appenroth KJ. 2016. Taxonomy of duckweeds (Lemnaceae), potential new crop plants. Emir J Food Agric. 28:291–302.
  • Steinberg R. 1946. Mineral requirements of Lemna minor. Plant Physiol. 21:42–48.
  • Stohs SJ, Bagchi D. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 18:321–336.
  • Tang Y, He R, Zhao J, Nie G, Xu L, Xing B. 2016. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ Pollut. 212:605–614.
  • The Council of the European Union. 1998. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. OJ L. 330:32–54.
  • Tsvetnova OB, Shcheglov AI, Stolbova VV. 2014. On the question of biodiagnostic methods. Radiat Biol Radioecol. 54:423–431. Russian.
  • Van Hoeck A, Horemans N, Hees M, Nauts R, Knapen D, Vandenhove H, Blust R. 2015a. β-Radiation stress responses on growth and antioxidative defense system in plants: a study with strontium-90 in Lemna minor. Int J Mol Sci. 16:15309–15327.
  • Van Hoeck A, Horemans N, Hees M, Nauts R, Knapen D, Vandenhove H, Blust R. 2015b. Characterizing dose response relationships: chronic gamma radiation in Lemna minor induces oxidative stress and altered polyploidy level. J Environ Radioact. 150:195–202.
  • Van Hoeck A, Horemans N, Nauts R, Hees MV, Vandenhove H, Blust R. 2017. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies. Plant Sci. 257:84–95.
  • Vanhoudt N, Horemans N, Wannijn J, Nauts R, Van Hees M, Vandenhove H. 2014. Primary stress responses in Arabidopsis thaliana exposed to gamma radiation. J Environ Radioact. 129:1–6.
  • Vidaković-Cifrek Ž, Tkalec M, Šikić S, Tolić S, Lepeduš H, Pevalek-Kozlina B. 2015. Growth and photosynthetic responses of Lemna minor L. exposed to cadmium in combination with zinc or copper. Arh Hig Rada Toksikol. 66:141–152.
  • Vitasse Y, Bresson С, Kremer A, Michalet R, Delzon S. 2010. Quantifying phenological plasticity to temperature in two temperate tree species. Funct Ecol. 24:1211–1218.
  • Wang X, Ma R, Cui D, Cao Q, Shan Z, Jiao Z. 2017. Physio-biochemical and molecular mechanism underlying the enhanced heavy metal tolerance in highland barley seedlings pre-treated with low-dose gamma irradiation. Sci Rep. 7:14233.
  • Xie L, Solhaug KA, Song Y, Brede DA, Lind OC, Salbu B, Tollefsen KE. 2019. Modes of action and adverse effects of gamma radiation in an aquatic macrophyte Lemna minor. Sci Total Environ. 680:23–34.
  • Yruela I. 2005. Copper in plants. Braz J Plant Physiol. 17:145–146.
  • Yruela I. 2009. Copper in plants: acquisition, transport and interactions. Funct Plant Biol. 36:409–430.
  • Yue L, Zhao J, Yu X, Lv K, Wang Z, Xing B. 2018. Interaction of CuO nanoparticles with duckweed (Lemna minor L): uptake, distribution and ROS production sites. Environ Pollut. 243:543–552.
  • Zagoskina NV, Nazarenko LV. 2016. Reactive oxygen species and antioxidant system of plants. Vestnik of Moscow City University. Natural Sciences. 2:9–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.