185
Views
1
CrossRef citations to date
0
Altmetric
Reflections and scientific reviews from established women scientists

Consequences and repair of radiation-induced DNA damage: fifty years of fun questions and answers

Pages 367-382 | Received 22 Apr 2021, Accepted 09 Jun 2021, Published online: 09 Jul 2021

References

  • Aller P, Duclos S, Wallace SS, Doublié S. 2011. A crystallographic study of the role of sequence context in thymine glycol bypass by a replicative DNA polymerase serendipitously sheds light on the exonuclease complex. J Mol Biol. 412(1):22–34.
  • Aller P, Rould MA, Hogg M, Wallace SS, Doublié S. 2007. A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. Proc Natl Acad Sci USA. 104(3):814–818.
  • Aller P, Ye Y, Wallace SS, Burrows C, Doublié S. 2010. Crystal structure of a replicative DNA polymerase bound to the oxidized guanine lesion guanidinohydantoin. Biochemistry. 49(11):2502–2509.
  • Armel PR, Strniste GF, Wallace SS. 1977. Studies on Escherichia coli X-ray endonuclease specificity: roles of hydroxyl and reducing radicals in the production of DNA lesions. Radiat Res. 69(2):328–338.
  • Armel PR, Wallace SS. 1978. Apurinic endonucleases from Saccharomyces cerevisiae. Nucleic Acids Res. 5(9):3347–3356.
  • Armel PR, Wallace SS. 1984. DNA repair in Saccharomyces cerevisiae: purification and characterization of apurinic endonucleases. J Bacteriol. 160(3):895–902.
  • Aspinwall R, Rothwell DG, Roldan-Arjona T, Anselmino C, Ward CJ, Cheadle JP, Sampson JR, Lindahl T, Harris PC, Hickson ID. 1997. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proc Natl Acad Sci USA. 94(1):109–114.
  • Bandaru V, Sunkara S, Wallace SS, Bond JP. 2002. A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII. DNA Repair. 1(7):517–529.
  • Bandaru V, Zhao X, Newton MR, Burrows CJ, Wallace SS. 2007. Human endonuclease VIII-like (NEIL) proteins in the giant DNA Mimivirus. DNA Repair. 6(11):1629–1641.
  • Beer M, Stern S, Carmalt D, Mohlhenrich KH. 1966. Determination of base sequence in nucleic acids with the electron microscope. V. The thymine-specific reactions of osmium tetroxide with deoxyribonucleic acid and its components. Biochemistry. 5(7):2283–2288.
  • Bellon S, Shikazono N, Cunniffe S, Lomax M, O'Neill P. 2009. Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic. Nucleic Acids Res. 37(13):4430–4440.
  • Bespalov I, Bond J, Purmal A, Wallace SS, Melamede RJ. 1999. Fabs specific for 8-oxoguanine: control of DNA binding. J Mol Biol. 293(5):1085–1095.
  • Bespalov I, Purmal A, Bond J, Wallace SS, Melamede RJ. 1997. Altering the specificity of hapten binding Fabs that recognize DNA base modifications. In Hori W, editor. Antibody engineering: new technology, application & commercialization. Southborough (MA): International Business Communications; Vol. 2; p. 181–198.
  • Bespalov I, Purmal A, Glackin M, Wallace SS, Melamede RJ. 1996. Recombinant Phabs reactive with 7,8-dihydro-8-oxoguanine, a major oxidative DNA lesion . Biochemistry. 35(7):2067–2078.
  • Blainey PC, Luo G, Kou SC, Mangel WF, Verdine GL, Bagchi B, Xie XS. 2009. Nonspecifically bound proteins spin while diffusing along DNA. Nat Struct Mol Biol. 16(12):1224–1229.
  • Blainey PC, van Oijen AM, Banerjee A, Verdine GL, Xie XS. 2006. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc Natl Acad Sci USA. 103(15):5752–5757.
  • Blaisdell JO, Harrison L, Wallace SS. 2001. Base excision repair processing of radiation-induced clustered DNA lesions. Radiat Prot Dosimetry. 97(1):25–31.
  • Blaisdell JO, Hatahet Z, Wallace SS. 1999. A novel role for Escherichia coli endonuclease VIII in the prevention of spontaneous G→T transversions. J Bacteriol. 181(20):6396–6402.
  • Blaisdell JO, Wallace SS. 2001. Abortive base-excision repair of radiation-induced clustered DNA lesions in Escherichia coli. Proc Natl Acad Sci USA. 98(13):7426–7430.
  • Boiteux S, Gajewski E, Laval J, Dizdaroglu M. 1992. Substrate specificity of the Escherichia coli Fpg protein (formamidopyrimidine-DNA glycosylase): Excision of purine lesions in DNA produced by ionizing radiation or photosensitization. Biochemistry. 31(1):106–110.
  • Boyce RP, Howard-Flanders P. 1964. Release of ultraviolet light-induced thymine dimers from DNA in E. coli K-12. Proc Natl Acad Sci USA. 51(2):293–300.
  • Cannan WJ, Rashid I, Tomkinson AE, Wallace SS, Pederson DS. 2017. The human Ligase IIIα-XRCC1 protein complex performs DNA nick repair after transient unwrapping of nucleosomal DNA. J Biol Chem. 292(13):5227–5238.
  • Cannan WJ, Tsang BP, Wallace SS, Pederson DS. 2014. Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages. J Biol Chem. 289(29):19881–19893.
  • Chaudhry MA, Weinfeld M. 1995. The action of Escherichia coli endonuclease III on multiply damaged sites in DNA. J Mol Biol. 249(5):914–922.
  • Chaudhry MA, Weinfeld M. 1997. Reactivity of human apurinic/apyrimidinic endonuclease and Escherichia coli exonuclease III with bistranded abasic sites in DNA. J Biol Chem. 272(25):15650–15655.
  • Chen BX, Hubbard K, Ide H, Wallace SS, Erlanger BF. 1990. Characterization of a monoclonal antibody to thymidine glycol monophosphate. Radiat Res. 124(2):131–136.
  • Chen BX, Kubo K, Ide H, Erlanger BF, Wallace SS, Kow YW. 1992. Properties of a monoclonal antibody for the detection of abasic sites, a common DNA lesion. Mutat Res. 273(3):253–261.
  • Chetsanga CJ, Lindahl T. 1979. Release of 7-methylguanine residues whose imidazole rings have been opened from damaged DNA by a DNA glycosylase from Escherichia coli. Nucleic Acids Res. 6(11):3673–3684.
  • Clark JM, Beardsley GP. 1987. Functional effects of cis-thymine glycol lesions on DNA synthesis in vitro. Biochemistry. 26(17):5398–5403.
  • Coste F, Ober M, Bihan Y-VL, Izquierdo MA, Hervouet N, Mueller H, Carell T, Castaing B. 2008. Bacterial base excision repair enzyme Fpg recognizes bulky N7-substituted-FapydG lesion via unproductive binding mode. Chem Biol. 15(7):706–717.
  • Cunningham RP, Weiss B. 1985. Endonuclease III (nth) mutants of Escherichia coli. Proc Natl Acad Sci USA. 82(2):474–478.
  • Demple B, Linn S. 1980. DNA N-glycosylase and UV repair. Nature. 287(5779):203–208.
  • DeVries JK, Wallace SS. 1983. Expression of cloned bacteriophage T4 uvsw and uvsy genes in rec+ and rec − Escherichia coli. J Virol. 47(3):406–412.
  • Doublié S, Bandaru V, Bond JP, Wallace SS. 2004. The crystal structure of human endonuclease VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity. Proc Natl Acad Sci USA. 101(28):10284–10289.
  • Duclos S, Aller P, Jaruga P, Dizdaroglu M, Wallace SS, Doublié S. 2012. Structural and biochemical studies of a plant formamidopyrimidine-DNA glycosylase reveal why eukaryotic Fpg glycosylases do not excise 8-oxoguanine. DNA Repair. 11(9):714–725.
  • Dunn AR, Kad NM, Nelson SR, Warshaw DM, Wallace SS. 2011. Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA. Nucleic Acids Res. 39(17):7487–7498.
  • Fleming AM, Zhou J, Wallace SS, Burrows CJ. 2015. A role for the fifth G-track in G-quadruplex forming oncogene promoter sequences during oxidative stress: Do these “Spare Tires” have an evolved function? ACS Cent Sci. 1(5):226–233.
  • Franklin MC, Wang J, Steitz TA. 2001. Structure of the replicating complex of a pol alpha family DNA polymerase. Cell. 105(5):657–667.
  • Frenkel K, Goldstein MS, Duker NJ, Teebor GW. 1981. Identification of the cis-thymine glycol moiety in oxidized deoxyribonucleic acid. Biochemistry. 20(4):750–754.
  • Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T. 2006. DNA repair and mutagenesis. 2nd ed. Washington (DC): ASM Press.
  • Fromme JC, Verdine GL. 2003. DNA lesion recognition by the bacterial repair enzyme MutM. J Biol Chem. 278(51):51543–51548.
  • Galick H, Kathe S, Liu M, Robey-Bond S, Kidane D, Wallace SS, Sweasy JB. 2013. A germline variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation. Proc Natl Acad Sci USA. 110(35):14314–14319.
  • Galick HA, Marsden CG, Kathe S, Dragon JA, Volk L, Nemec AA, Wallace SS, Prakash A, Doublié S, Sweasy JB. 2017. The NEIL1 G83D germline DNA glycosylase variant induces genomic instability and cellular transformation. Oncotarget. 8(49):85883–85895.
  • Georgakilas AG, Bennett PV, Wilson DM III, Sutherland BM. 2004. Processing of bistranded abasic DNA clusters in gamma-irradiated human hematopoietic cells. Nucleic Acids Res. 32(18):5609–5620.
  • Gifford CM, Blaisdell JO, Wallace SS. 2000. Multiprobe RNase protection assay analysis of mRNA levels for the Escherichia coli oxidative DNA glycosylase genes under conditions of oxidative stress. J Bacteriol. 182(19):5416–5424.
  • Gifford CM, Wallace SS. 1999. The genes encoding formamidopyrimidine and MutY DNA glycosylases in Escherichia coli are transcribed as part of complex operons. J Bacteriol. 181(14):4223–4236.
  • Gifford CM, Wallace SS. 2000. The genes encoding endonuclease VIII and endonuclease III in Escherichia coli are transcribed as the terminal genes in operons. Nucleic Acids Res. 28(3):762–769.
  • Gilboa R, Zharkov DO, Golan G, Fernandes AS, Gerchman SE, Matz E, Kycia JH, Grollman AP, Shoham G. 2002. Structure of formamidopyrimidine-DNA glycosylase covalently complexed to DNA. J Biol Chem. 277(22):19811–19816.
  • Glackin M, Maccabee M, Evans J, Wallace SS. 1994. Sequence context effects on the mutagenic outcome of pyrimidine ring fragmentation products: computational analysis. In Sarma RH, Sarma MH, editors. Structural biology: the state of the art, Vol. 2. New York (NY): Adenine Press; p. 335–347.
  • Golan G, Zharkov DO, Feinberg H, Fernandes AS, Zaika EI, Kycia JH, Grollman AP, Shoham G. 2005. Structure of the uncomplexed DNA repair enzyme endonuclease VIII indicates significant interdomain flexibility. Nucleic Acids Res. 33(15):5006–5016.
  • Guo Y, Bandaru V, Jaruga P, Zhao X, Burrows CJ, Iwai S, Dizdaroglu M, Bond JP, Wallace SS. 2010. The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. DNA Repair. 9(2):177–190.
  • Harrison L, Hatahet Z, Purmal AA, Wallace SS. 1998. Multiply damaged sites in DNA: interactions with Escherichia coli endonucleases III and VIII. Nucleic Acids Res. 26(4):932–941.
  • Harrison L, Hatahet Z, Wallace SS. 1999. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites. J Mol Biol. 290(3):667–684.
  • Hatahet Z, Kow YW, Purmal AA, Cunningham RP, Wallace SS. 1994. New substrates for old enzymes: 5-hydroxy-2′-deoxycytidine and 5-hydroxy-2′-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase while 5-hydroxy-2′-deoxyuridine is a substrate for uracil DNA N-glycosylase. J Biol Chem. 269(29):18814–18821.
  • Hatahet Z, Zhou M, Ide H, Morrical SW, Reha-Krantz LJ, Wallace SS. 1999. In vitro selection of sequence contexts for good and poor bypass of abasic sites and tetrahydrofuran by T4 DNA polymerase holoenzyme. J Mol Biol. 286(4):1045–1057.
  • Hatahet Z, Zhou M, Reha-Krantz LJ, Morrical SW, Wallace SS. 1998. In search of a mutational hotspot. Proc Natl Acad Sci USA. 95(15):8556–8561.
  • Hayes RH, Petrullo LA, Huang H, Wallace SS, LeClerc JE. 1988. Oxidative damage in DNA. Lack of mutagenicity by thymine glycol lesions. J Mol Biol. 201(2):239–246.
  • Hazra TK, Izumi T, Boldogh I, Imhoff B, Kow YW, Jaruga P, Dizdaroglu M, Mitra S. 2002. Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proc Natl Acad Sci USA. 99(6):3523–3528.
  • Hogg M, Wallace SS, Doublié S. 2004. Crystallographic snapshots of a replicative DNA polymerase encountering an abasic site. Embo J. 23(7):1483–1493.
  • Hubbard K, Huang H, Laspia MF, Ide H, Erlanger BF, Wallace SS. 1989. Immunochemical quantitation of thymine glycols in oxidized and X-irradiated DNA. Radiat Res. 118(2):257–268.
  • Ide H, Akamatsu K, Kimura Y, Michiue K, Makino K, Asaeda A, Takamori Y, Kubo K. 1993. Synthesis and damage specificity of a novel probe for the detection of abasic sites in DNA. Biochemistry. 32(32):8276–8283.
  • Ide H, Kow YW, Chen BX, Erlanger BF, Wallace SS. 1997. Antibodies to oxidative DNA damage: characterization of antibodies to 8-oxopurines. Cell Biol Toxicol. 13(6):405–417.
  • Ide H, Kow YW, Wallace SS. 1985. Thymine glycols and urea residues in M13 DNA constitute replicative blocks in vitro. Nucleic Acids Res. 13(22):8035–8052.
  • Ide H, Melamede RJ, Wallace SS. 1987. Synthesis of dihydrothymidine and thymidine glycol 5′-triphosphates and their ability to serve as substrates for Escherichia coli DNA polymerase I. Biochemistry. 26(3):964–969.
  • Ide H, Petrullo L, Hatahet Z, Wallace SS. 1991. Processing of DNA base damage by DNA polymerases: dihydrothymine and ß-ureidoisobutyric acid as models for instructive and non-instructive lesions. J Biol Chem. 266(3):1469–1477.
  • Ide H, Wallace SS. 1988. Dihydrothymidine and thymidine glycol triphosphates as substrates for DNA polymerases: differential recognition of thymine C5-C6 bond saturation and sequence specificity of incorporation. Nucleic Acids Res. 16(23):11339–11354.
  • Imamura K, Averill A, Wallace SS, Doublié S. 2012. Structural characterization of viral ortholog of human DNA glycosylase NEIL1 bound to thymine glycol or 5-hydroxyuracil-containing DNA. J Biol Chem. 287(6):4288–4298.
  • Imamura K, Wallace SS, Doublié S. 2009. Structural characterization of a viral NEIL1 ortholog unliganded and bound to abasic site-containing DNA. J Biol Chem. 284(38):26174–26183.
  • Inoue M, Shen G-P, Chaudhry MA, Galick H, Blaisdell JO, Wallace SS. 2004. Expression of the oxidative base excision repair enzymes is not induced in TK6 human lymphoblastoid cells after low doses of ionizing radiation. Radiat Res. 161(4):409–417.
  • Jiang D, Hatahet Z, Blaisdell JO, Melamede RJ, Wallace SS. 1997b. Escherichia coli endonuclease VIII: cloning, sequencing, and overexpression of the nei structural gene and characterization of nei and nei nth mutants. J Bacteriol. 179(11):3773–3782.
  • Jiang D, Hatahet Z, Melamede RJ, Kow YW, Wallace SS. 1997a. Characterization of Escherichia coli endonuclease VIII. J Biol Chem. 272(51):32230–32239.
  • Katcher HL, Wallace SS. 1978. The production of alkali-labile lesions in X-irradiated PM2 DNA. Int J Radiat Biol Relat Stud Phys Chem Med. 34(5):497–500.
  • Katcher HL, Wallace SS. 1983. Characterization of the Escherichia coli X-ray endonuclease, endonuclease III. Biochemistry. 22(17):4071–4081.
  • Kathe SD, Barrantes-Reynolds R, Jaruga P, Newton MR, Burrows CJ, Bandaru V, Dizdaroglu M, Bond JP, Wallace SS. 2009. Plant and fungal Fpg homologs are formamidopyrimidine DNA glycosylases but not 8-oxoguanine DNA glycosylases. DNA Repair. 8(5):643–653.
  • Kow YW, Faundez G, Melamede RJ, Wallace SS. 1991. Processing of model single-strand breaks in ØX-174 RF transfecting DNA by Escherichia coli. Radiat Res. 126(3):357–366.
  • Kow YW, Wallace SS. 1985. Exonuclease III recognizes urea residues in oxidized DNA. Proc Natl Acad Sci USA. 82(24):8354–8358.
  • Kow YW, Wallace SS. 1987. Mechanism of action of Escherichia coli endonuclease III. Biochemistry. 26(25):8200–8206.
  • Kubo K, Ide H, Wallace SS, Kow YW. 1992. A novel, sensitive, and specific assay for abasic sites, the most commonly produced DNA lesion. Biochemistry. 31(14):3703–3708.
  • Laspia MF, Wallace SS. 1988. Excision repair of thymine glycols, urea residues and apurinic sides in Escherichia coli. J Bacteriol. 170(8):3359–3366.
  • Li N, Wang J, Wallace SS, Chen J, Zhou J, D'Andrea AD. 2020. Cooperation of the NEIL3 and Fanconi anemia/BRCA pathways in interstrand crosslink repair. Nucleic Acids Res. 48(6):3014–3028.
  • Lindahl T, Barnes DE. 2000. Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 65:127–133.
  • Liu M, Bandaru V, Bond JP, Jaruga P, Zhao X, Christov PP, Burrows CJ, Rizzo CJ, Dizdaroglu M, Wallace SS. 2010. The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo. Proc Natl Acad Sci USA. 107(11):4925–4930.
  • Liu M, Bandaru V, Holmes A, Averill AM, Cannan W, Wallace SS. 2012. Expression and purification of active mouse and human NEIL3 proteins. Protein Expr Purif. 84(1):130–139.
  • Liu M, Doublié S, Wallace SS. 2013b. Neil3, the final frontier for the DNA glycosylases that recognize oxidative damage. Mutat Res. 743–744:4–11.
  • Liu M, Imamura K, Averill AM, Wallace SS, Doublié S. 2013a. Structural characterization of a mouse ortholog of human NEIL3 with a marked preference for single-stranded DNA. Structure. 21(2):247–256.
  • Maccabee M, Evans J, Glackin M, Hatahet Z, Wallace SS. 1994. Pyrimidine ring fragmentation products. Effects of lesion structure and sequence context on mutagenesis. J Mol Biol. 236(2):514–530.
  • Maher RL, Marsden CG, Averill AA, Wallace SS, Sweasy JB, Pederson DS. 2017. Human cells contain a factor that facilitates the DNA glycosylase-mediated excision of oxidized bases from occluded sites in nucleosomes. DNA Repair. 57:91–97.
  • Maher RL, Prasad A, Rizvanova O, Wallace SS, Pederson DS. 2013. Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes. DNA Repair. 12(11):964–971.
  • Maher RL, Wallace SS, Pederson DS. 2019. The lyase activity of bifunctional DNA glycosylases and the 3′-diesterase activity of APE1 contribute to the repair of oxidized bases in nucleosomes. Nucleic Acids Res. 47(6):2922–2931.
  • Margulies L, Wallace SS. 1984. Apurinic endonuclease activity remains constant during early Drosophila development. Cell Biol Toxicol. 1(1):127–143.
  • Marsden CG, Dragon JA, Wallace SS, Sweasy JB. 2017. Base excision repair variants in cancer. In: Eichman B., editor. Methods in enzymology. Amsterdam: Elsevier. Chapter 6, Vol. 591; p. 119–157.
  • Melamede RJ, Hatahet Z, Kow YW, Ide H, Wallace SS. 1994. Isolation and characterization of endonuclease VIII from Escherichia coli. Biochemistry. 33(5):1255–1264.
  • Melamede RJ, Kow YW, Wallace SS. 1987. The isolation and preliminary characterization of endonuclease VIII from Escherichia coli. In: Cerutti P, Nygaard O, Simic M, editors. Anticarcinogenesis and radiation protection. New York (NY): Plenum Press; p. 139–144.
  • Melamede RJ, Wallace SS. 1977. Properties of the nonlethal recombinational repair x and y mutants of bacteriophage T4. II. DNA synthesis. J Virol. 24(1):28–40.
  • Melamede RJ, Wallace SS. 1980a. Properties of the nonlethal recombinational repair deficient mutants of bacteriophage T4. III. DNA replicative intermediates and T4w. Mol Gen Genet. 177(3):501–509.
  • Melamede RJ, Wallace SS. 1980b. Phenotypic differences among the alleles of the T4 recombination defective mutants. Mol Gen Genet. 179(2):327–330.
  • Mladenov E, Saha J, Iliakis G. 2018. Processing-challenges generated by clusters of DNA double-strand breaks underpin increased effectiveness of high-LET radiation and chromothripsis. Adv Exp Med Biol. 1044:149–168.
  • Moran E, Wallace SS. 1985. The role of specific DNA base damage in the X-ray-induced inactivation of PM2 bacteriophage. Mutat Res. 146(3):229–241.
  • Nejad MI, Housh K, Rodriguez AA, Haldar T, Kathe S, Wallace SS, Eichman BF, Gates KS. 2020. Unhooking of an interstrand cross-link at DNA fork structures by the DNA glycosylase NEIL3. DNA Repair. 86:102752.
  • Nelson SR, Dunn AR, Kathe SD, Warshaw DM, Wallace SS. 2014. Two glycosylase families diffusively scan DNA using a wedge residue to probe for and identify oxidatively damaged bases. Proc Natl Acad Sci USA. 111(20):E2091–9.
  • Nelson SR, Kathe SD, Hilzinger TS, Averill AM, Warshaw DM, Wallace SS, Lee AJ. 2019. Single molecule glycosylase studies with engineered 8-oxoguanine DNA damage sites show functional defects of a MUTYH polyposis variant. Nucleic Acids Res. 47(6):3058–3071.
  • Nickoloff JA, Sharma N, Taylor L. 2020. Clustered DNA double-strand breaks: biological effects and relevance to cancer radiotherapy. Genes. 11(1):99.
  • Odell ID, Barbour JE, Murphy D, Della Maria JA, Sweasy JB, Tomkinson AE, Wallace SS, Pederson DS. 2011. Nucleosome disruption by DNA ligase III-XRCC1 promotes efficient base excision repair. Mol Cell Biol. 31(22):4623–4632.
  • Odell ID, Newick K, Heintz N, Wallace SS, Pederson DS. 2010. Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1. DNA Repair. 9(2):134–143.
  • Pettijohn D, Hanawalt P. 1963. Deoxyribonucleic acid replication in bacteria following ultraviolet irradiation. Biochim Biophys Acta. 72:127–129.
  • Pettijohn D, Hanawalt P. 1964. Evidence for repair-replication of ultraviolet damaged DNA in bacteria. J Mol Biol. 9:395–410.
  • Porecha RH, Stivers JT. 2008. Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils. Proc Natl Acad Sci USA. 105(31):10791–10796.
  • Prakash A, Carroll B, Sweasy JB, Wallace SS, Doublié S. 2014. Genome and cancer single nucleotide polymorphisms of the human NEIL1 DNA glycosylase: activity, structure, and the effect of editing. DNA Repair. 14:17–26.
  • Prakash A, Eckenroth BE, Averill AM, Imamura K, Wallace SS, Doublié S. 2013. Structural investigation of a viral ortholog of human NEIL2/3 DNA glycosylases. DNA Repair. 12(12):1062–1071.
  • Prasad A, Wallace SS, Pederson DS. 2007. Initiation of base excision repair of oxidative lesions in nucleosomes by the human, bifunctional DNA glycosylase NTH1. Mol Cell Biol. 27(24):8442–8453.
  • Purmal AA, Bond J, Lyons BA, Kow YW, Wallace SS. 1998a. Uracil glycol deoxynucleoside triphosphate is a better substrate for DNA polymerase I Klenow fragment than thymine glycol deoxynucleoside triphosphate. Biochemistry. 37(1):330–338.
  • Purmal AA, Kow YW, Wallace SS. 1994a. Major oxidative products of cytosine, 5-hydroxycytosine and 5-hydroxyuracil, exhibit sequence context-dependent mispairing in vitro. Nucleic Acids Res. 22(1):72–78.
  • Purmal AA, Kow YW, Wallace SS. 1994b. 5-Hydroxypyrimidine deoxynucleoside triphosphates are more efficiently incorporated into DNA by exonuclease-free Klenow fragment than 8-oxopurine deoxynucleoside triphosphates. Nucleic Acids Res. 22(19):3930–3935.
  • Purmal AA, Lampman GW, Bond JP, Hatahet Z, Wallace SS. 1998b. Enzymatic processing of uracil glycol, a major oxidative product of DNA cytosine. J Biol Chem. 273(16):10026–10035.
  • Rajagopalan R, Melamede RJ, Laspia MF, Wallace SS, Erlanger BF. 1984. Properties of antibodies to thymine glycol, a product of the radiolysis of DNA. Radiat Res. 97(3):499–510.
  • Sagher D, Strauss B. 1983. Insertion of nucleotides opposite apurinic/apyrimidinic sites in deoxyribonucleic acid during in vitro synthesis: uniqueness of adenine nucleotides. Biochemistry. 22(19):4518–4526.
  • Sagher D, Strauss B. 1985. Abasic sites from cytosine as termination signals for DNA synthesis. Nucleic Acids Res. 13(12):4285–4298.
  • Semlow DR, Zhang J, Budzowska M, Drohat AC, Walter JC. 2016. Replication-dependent unhooking of DNA interstrand cross-links by the NEIL3 glycosylase. Cell. 167(2):498–511.
  • Setlow RB, Carrier WL. 1964. The disappearance of thymine dimers from DNA: an error-correcting mechanism. Proc Natl Acad Sci USA. 51(2):226–231.
  • Strauss B, Rabkin S, Sagher D, Moore P. 1982. The role of DNA polymerase in base substitution mutagenesis on non-instructional templates. Biochimie. 64(8–9):829–838.
  • Strniste GF, Wallace SS. 1975a. An Escherichia coli endonuclease which acts on x-irradiated DNA. In: Hanawalt PC, Setlow RB, editors. Molecular mechanisms for repair of DNA part B. New York (NY); London: Plenum Publishing; p. 201–204.
  • Strniste GF, Wallace SS. 1975b. Endonucleolytic incision of x-irradiated deoxyribonucleic acid by extracts of Escherichia coli. Proc Natl Acad Sci USA. 72(6):1997–2001.
  • Sugahara M, Mikawa T, Kumasaka T, Yamamoto M, Kato R, Fukuyama K, Inoue Y, Kuramitsu S. 2000. Crystal structure of a repair enzyme of oxidatively damaged DNA, MutM (Fpg), from an extreme thermophile, Thermus thermophilus HB8. EMBO J. 19(15):3857–3869
  • Sutherland BM, Bennett PV, Sidorkina O, Laval J. 2000. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proc Natl Acad Sci USA. 97(1):103–108.
  • Tchou J, Kasai H, Shibutani S, Chung MH, Laval J, Grollman AP, Nishimura S. 1991. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci USA. 88(11):4690–4694.
  • Wallace SS, Bandaru V, Kathe S, Bond JP. 2003. The enigma of endonuclease VIII. DNA Repair. 2(5):441–453.
  • Wallace SS, Erlanger BF, Beiser SM. 1969. Antibodies to ribosides: effect on in vitro priming ability of DNA. J Mol Biol. 43(1):41–49.
  • Wallace SS, Erlanger BF, Beiser SM. 1971. Antibodies to nucleic acids. Immunochemical studies on dinucleoside phosphate-protein conjugates. Biochemistry. 10(4):679–683.
  • Wallace SS, Melamede RJ. 1972. Host- and phage-mediated repair of radiation damage in bacteriophage T4. J Virol. 10(6):1159–1169.
  • Wallace SS, Murphy DL, Sweasy JB. 2012. Base excision repair and cancer. Cancer Lett. 327(1–2):73–89.
  • Wallace SS, Van Dyke JG. 1970. The effect of X-irradiation on gene function in bacteriophage T4. Radiat Res. 43(2):379–392.
  • Wallace SS. 2013. Personal reflections of a woman scientist growing up in a man’s world. DNA Repair. 12(5):313–325.
  • Wallace SS. 2014. Base excision repair: a critical player in many games. DNA Repair. 19:14–26.
  • Wallace SS. 2021. Molecular radiobiology and the origins of the base excision repair pathway: an historical perspective. Int J Radiat Biol. 1–12. doi: https://doi.org/10.1080/09553002.2021.1908639
  • Ward JF, Evans JW, Limoli CL, Calabro-Jones PM. 1987. Radiation and hydrogen peroxide induced free radical damage to DNA. Br J Cancer Suppl. 8:105–112.
  • Ward JF. 1988. DNA damage produced by ionizing radiation: identities, mechanisms of formation, and repairability. Prog Nucleic Acid Res Mol Biol. 35:95–125.
  • Yang N, Chaudhry MA, Wallace SS. 2006. Base excision repair by hNTH1 and hOGG1: a two edged sword in the processing of DNA damage in gamma−irradiated human cells. DNA Repair. 5(1):43–51.
  • Yang N, Galick H, Wallace SS. 2004. Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks. DNA Repair. 3(10):1323–1334.
  • Yang Z, Nejad MI, Varela JG, Price NE, Wang Y, Gates KS. 2017. A role for the base excision repair enzyme NEIL3 in replication-dependent repair of interstrand DNA cross-links derived from psoralen and abasic sites. DNA Repair. 52:1–11.
  • Zahn KE, Belrhali H, Wallace SS, Doublié S. 2007. Caught bending the A-rule: crystal structures of translesion DNA synthesis with a non-natural nucleotide. Biochemistry. 46(37):10551–10561.
  • Zahn KE, Averill A, Wallace SS, Doublié S. 2011. The miscoding potential of 5-hydroxycytosine arises due to template instability in the replicative polymerase active site. Biochemistry. 50(47):10350–10358.
  • Zerler BR, Wallace SS. 1984. Repair-defective mutants of Alteromonas espejiana, the host for bacteriophage PM2. J Bacteriol. 157(2):465–474.
  • Zhou J, Chan C, Lambelé M, Yusufzai T, Stumpff J, Opresko P, Thali M, Wallace SS. 2017. NEIL3 repairs telomere damage during S phase to secure chromosome segregation at mitosis. Cell Rep. 20(9):2044–2056.
  • Zhou J, Fleming AM, Averill AM, Burrows CJ, Wallace SS. 2015. The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures. Nucleic Acids Res. 43(8):4039–4054.
  • Zhou J, Liu M, Fleming AM, Burrows CJ, Wallace SS. 2013. Neil3 and NEIL1 DNA glycosylases remove oxidative damages from quadruplex DNA and exhibit preferences for lesions in the telomeric sequence context. J Biol Chem. 288(38):27263–27272.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.