1,981
Views
4
CrossRef citations to date
0
Altmetric
Reflections and scientific reviews from established women scientists

Non-targeted effects of radiation: a personal perspective on the role of exosomes in an evolving paradigm

, &
Pages 410-420 | Received 27 May 2021, Accepted 04 Sep 2021, Published online: 21 Oct 2021

References

  • Albanese J, Dainiak N. 2003. Modulation of intercellular communication mediated at the cell surface and on extracellular, plasma membrane-derived vesicles by ionizing radiation. Exp Hematol. 31(6):455–464.
  • Al-Mayah AH, Irons SL, Pink RC, Carter DR, Kadhim MA. 2012. Possible role of exosomes containing RNA in mediating nontargeted effect of ionizing radiation. Radiat Res. 177(5):539–545.
  • Al-Mayah A, Bright S, Chapman K, Irons S, Luo P, Carter D, Goodwin E, Kadhim M. 2015. The non-targeted effects of radiation are perpetuated by exosomes. Mutat Res. 772:38–45.
  • Al-Mayah A, Bright S, Bowler D, Slijepcevic P, Goodwin E, Kadhim M. 2017. Exosome-mediated telomere instability in human breast epithelial cancer cells after X irradiation. Radiat Res. 187(1):98–106.
  • Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CD, Zhang G, Tofilon PJ, Camphausen KA. 2013. Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Transl Oncol. 6(6):638–648.
  • Autsavapromporn N, de Toledo SM, Little JB, Jay-Gerin J, Harris AL, Azzam EI. 2011. The role of gap junction communication and oxidative stress in the propagation of toxic effects among high-dose α-particle-irradiated human cells. Radiat Res. 175(3):347–357.
  • Averbeck D. 2010. Non-targeted effects as a paradigm breaking evidence. Mutat Res. 687(1–2):7–12.
  • Azzam EI, De Toledo SM, Little JB. 2001. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proc Natl Acad Sci USA. 98(2):473–478.
  • Azzam EI, De Toledo SM, Spitz DR, Little JB. 2002. Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures. Cancer Res. 62(19):5436–5442.
  • Barker HE, Paget JTE, Khan AA, Harrington KJ. 2015. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 15(7):409–425.
  • Beer L, Zimmermann M, Mitterbauer A, Ellinger A, Gruber F, Narzt MS, Zellner M, Gyongyosi M, Madlener S, Simader E, et al. 2015. Analysis of the secretome of apoptotic peripheral blood mononuclear cells: impact of released proteins and exosomes for tissue regeneration. Sci Rep. 5:16662.
  • Belli M, Antonella Tabocchini M. 2020. Ionizing radiation-induced epigenetic modifications and their relevance to radiation protection. Int J Mol Sci. 21(17):5993.
  • Belyakov OV, Folkard M, Mothersill C, Prise KM, Michael BD. 2002. Bystander-induced apoptosis and premature differentiation in primary urothelial explants after charged particle microbeam irradiation. Radiat Prot Dosimetry. 99(1–4):249–251.
  • Blyth BJ, Sykes PJ. 2011. Radiation-induced bystander effects: what are they, and how relevant are they to human radiation exposures? Radiat Res. 176(2):139–157.
  • Borges FT, Reis LA, Schor N. 2013. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Braz J Med Biol Res. 46(10):824–830.
  • Bowler DA, Moore SR, Macdonald DA, Smyth SH, Clapham P, Kadhim MA. 2006. Bystander-mediated genomic instability after high LET radiation in murine primary haemopoietic stem cells. Mutat Res. 597(1–2):50–61.
  • Bright S, Kadhim M. 2018. The future impacts of non-targeted effects. Int J Radiat Biol. 94(8):1–33.
  • Burtt J, Thompson P, Lafrenie R. 2016. Non-targeted effects and radiation-induced carcinogenesis: a review. J Radiol Prot. 36 (1):R23–R35.
  • Calabrese EJ, Baldwin LA. 2001. Hormesis: a generalizable and unifying hypothesis. Crit Rev Toxicol. 31(4–5):353–424.
  • Chow H, Herrup K. 2015. Genomic integrity and the ageing brain. Nat Rev Neurosci. 16(11):672–684.
  • Clutton SM, Townsend KM, Walker C, Ansell JD, Wright EG. 1996. Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures. Carcinogenesis. 17(8):1633–1639.
  • Daino K, Ichimura S, Nenoi M. 2002. Early induction of CDKN1A (p21) and GADD45 mRNA by a low dose of ionizing radiation is due to their dose-dependent post-transcriptional regulation. Radiat Res. 157(4):478–482.
  • Desouky O, Din N, Zhou G. 2015. Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci. 8(2):247–254.
  • Doyle L, Wang M. 2019. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8(7):727.
  • Dubrova Y, Plumb M, Brown J, Jeffreys A. 1998. Radiation-induced germline instability at minisatellite loci. Int J Radiat Biol. 74(6):689–696.
  • Elbakrawy E, Kaur Bains S, Bright S, Al-Abedi R, Mayah A, Goodwin E, Kadhim M. 2020. Radiation-induced senescence bystander effect: the role of exosomes. Biology. 9:191.
  • Elbakrawy EM, Mayah A, Hill MA, Kadhim M. 2020. Induction of genomic instability in a primary human fibroblast cell line following low-dose alpha-particle exposure and the potential role of exosomes. Biology. 10(1):11.
  • Elmore S. 2007. Apoptosis: a review of programmed cell death. Toxicol Pathol. 35(4):495–516.
  • Facoetti A, Ballarini F, Cherubini R, Gerardi S, Nano R, Ottolenghi A, Prise KM, Trott KR, Zilio C. 2006. Gamma ray-induced bystander effect in tumour glioblastoma cells: a specific study on cell survival, cytokine release and cytokine receptors. Radiat Prot Dosimetry. 122 (1–4):271–274.
  • Gerashchenko BI, Howell RW. 2003. Cell proximity is a prerequisite for the proliferative response of bystander cells co-cultured with cells irradiated with gamma-rays. Cytometry A. 56(2):71–80.
  • Ghosh S, Ghosh A, Krishna M. 2015. Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells. Mutat Res Genet Toxicol Environ Mutagen. 794:39–45.
  • Hamada N, Matsumoto H, Hara T, Kobayashi Y. 2007. Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects. J Radiat Res. 48(2):87–95.
  • Hamada N, Fujimichi Y. 2015. Role of carcinogenesis related mechanisms in cataractogenesis and its implications for ionizing radiation cataractogenesis. Cancer Lett. 368(2):262–274.
  • Hamasaki K, Kazue I, Kei N, Norio T, Yoshiaki K, Yoichiro K. 2007. Short-term culture and gammaH2AX flow cytometry determine differences in individual radiosensitivity in human peripheral T lymphocytes. Environ Mol Mutagen. 48(1):38–47.
  • Hanahan D, Weinberg R. 2011. Hallmarks of cancer: the next generate. Cell. 144(5):646–674.
  • Havaki S, Kotsinas A, Chronopoulos E, Kletsas D, Georgakilas A, Gorgoulis VG. 2015. The role of oxidative DNA damage in radiation induced bystander effect. Cancer Lett. 356(1):43–51.
  • Hazawa M, Tomiyama K, Saotome-Nakamura A, Obara C, Yasuda T, Gotoh T, Tanaka I, Yakumaru H, Ishihara H, Tajima K. 2014. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. Biochem Biophys Res Commun. 446(4):1165–1171.
  • Hei TK, Zhou H, Ivanov VN, Hong M, Lieberman HB, Brenner DJ, Amundson SA, Geard CR. 2008. Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol. 60(8):943–950.
  • Huo L, Nagasawa H, Little JB. 2001. HPRT mutants induced in bystander cells by very low fluences of alpha particles result primarily from point mutations. Radiat Res. 156(5 Pt 1):521–525.
  • Hu B, Han W, Wu L, Feng H, Liu X, Zhang L, Xu A, Hei TK, Yu Z. 2005. In situ visualization of DSBs to assess the extranuclear/extracellular effects induced by low-dose alpha-particle irradiation. Radiat Res. 164(3):286–291.
  • Jabbari N, Karimipour M, Khaksar M, Akbariazar E, Heidarzadeh M, Mojarad B, Aftab H, Rahbarghazi R, Rezaie J. 2020. Tumor-derived extracellular vesicles: insights into bystander effects of exosomes after irradiation. Lasers Med Sci. 35(3):531–545.
  • Jamali M, Trott K. 1996. Increased micronucleus frequency in the progeny of irradiated Chinese hamster cells. Int J Radiat Biol. 69(3):301–307.
  • Jella KK, Rani S, O'Driscoll L, McClean B, Byrne HJ, Lyng FM. 2014. Exosomes are involved in mediating radiation induced bystander signaling in human keratinocyte cells. Radiat Res. 181(2):138–145.
  • Jelonek K, Widlak P, Pietrowska M. 2016. The influence of ionizing radiation on exosome composition, secretion and intercellular communication. Protein Pept Lett. 23(7):656–663.
  • Kadhim MA, Macdonald DA, Goodhead DT, Lorimore SA, Marsden SJ, Wright EG. 1992. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature. 355(6362):738–740.
  • Kadhim MA, Lorimore SA, Hepburn MD, Goodhead DT, Buckle VJ, Wright EG. 1994. Alpha-particle-induced chromosomal instability in human bone marrow cells. Lancet. 344(8928):987–988.
  • Kadhim M, Marsden S, Malcolmson A, Folkard M, Prise KM. 2000. Studies of targeted effects on human lymphocytes using a charged-particle microbeam. Radiat Res. 153(2):227–228.
  • Kadhim MA, Marsden SJ, Goodhead DT, Malcolmson AM, Folkard M, Prise KM, Michael BD. 2001. Long-term genomic instability in human lymphocytes induced by single-particle irradiation. Radiat Res. 155(1 Pt 1):122–126.
  • Kadhim MA, Lee R, Moore SR, Macdonald DA, Chapman KL, Patel G, Prise KM. 2010. Genomic instability after targeted irradiation of human lymphocytes: evidence for inter-individual differences under bystander conditions. Mutat Res. 688(1–2):91–94.
  • Kadhim M, Salomaa S, Wright E, Hildebrandt G, Belyakov OV, Prise KM, Little MP. 2013. Non-targeted effects of ionising radiation-implications for low dose risk. Mutat Res. 752(2):84–98.
  • Kadhim M, Hill M. 2015. Non-targeted effects of radiation exposure: recent advances and implications. Radiat Prot Dosimetry. 166(1–4):118–124.
  • Kovalchuk O, Baulch JE. 2008. Epigenetic changes and nontargeted radiation effects – Is there a link? Environ Mol Mutagen. 49(1):16–25.
  • Kowal J, Tkach M, Thery C. 2014. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 29:116–125.
  • Kronenberg A. 1994. Radiation-induced genomic instability. Int J Radiat Biol. 66(5):603–609.
  • Lad J, Rusin A, Seymour C, Mothersill C. 2019. An investigation into neutron-induced bystander effects: how low can you go? Environ Res. 175:84–99.
  • Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux J-F, Kobayashi T, Salles J-P, Perret B, Bonnerot C, et al. 2004. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J. 380(Pt 1):161–171.
  • Lespagnol A, Duflaut D, Beekman C, Blanc L, Fiucci G, Marine JC, Vidal M, Amson R, Telerman A. 2008. Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ. 15(11):1723–1733.
  • Lewis DA, Mayhugh BM, Qin Y, Trott K, Mendonca MS. 2001. Production of delayed death and neoplastic transformation in CGL1 cells by radiation-induced bystander effects. Radiat Res. 156(3):251–258.
  • Limoli CL, Day JP, Ward JF, Morgan WF. 1998. Induction of chromosome aberrations and delayed genomic instability by photochemical processes. Photchem Photbio. 67(2):233–238.
  • Limoli CL, Giedzinski E. 2003. Induction of chromosomal instability by chronic oxidative stress. Neoplasia. 5(4):339–346.
  • Limoli CL. 2017. Lessons learned from an unstable genomic landscape. Int J Radiat Biol. 93:1177–1181.
  • Llorente A, Skotland T, Sylvänne T, Kauhanen D, Róg T, Orłowski A, Vattulainen I, Ekroos K, Sandvig K. 2013. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta. 1831(7):1302–1309.
  • Little JB, Azzam EI, de Toledo SM, Nagasawa H. 2002. Bystander effects: intercellular transmission of radiation damage signals. Radiat Prot Dosimetry. 99(1–4):159–162.
  • Little MP, Vineis P, Li G. 2008. A stochastic carcinogenesis model incorporating multiple types of genomic instability fitted to colon cancer data. J Theor Biol. 254(2):229–238.
  • Lorimore SA, Kadhim MA, Pocock DA, Papworth D, Stevens DL, Goodhead DT, Wright EG. 1998. Chromosomal instability in the descendants of unirradiated surviving cells after alpha-particle irradiation. Proc Natl Acad Sci U S A. 95(10):5730–5733.
  • Lorimore SA, Wright EG. 2003. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review. Int J Radiat Biol. 79(1):15–25.
  • Lyng FM, Seymour CB, Mothersill C. 2002. Initiation of apoptosis in cells exposed to medium from the progeny of irradiated cells: a possible mechanism for bystander-induced genomic instability? Radiat Res. 157(4):365–370.
  • Mancuso M, Giardullo P, Leonardi S, Pasquali E, Casciati A, De Stefano I, Tanori M, Pazzaglia S, Saran A. 2013. Dose and spatial effects in long-distance radiation signaling in vivo: implications for abscopal tumorigenesis. Int J Radiat Oncol Biol Phys. 85(3):813–819.
  • Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. 2012. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 40(Database issue):D1241–D1244.
  • Mavragani I, Nikitaki Z, Souli M, Aziz A, Nowsheen S, Aziz K, Rogakou E, Georgakilas A. 2017. Complex DNA damage: a route to radiation-induced genomic instability and carcinogenesis. Cancers (Basel). 9(7):91.
  • Mayers JR, Audhya A. 2012. Vesicle formation within endosomes: an ESCRT marks the spot. Commun Integr Biol. 5(1):50–56.
  • Meehan B, Rak JD, Vizio D. 2016. Oncosomes _ large and small: what are they, where they came from? J Extracell Vesicles. 5:33109.
  • Melodies J. 2016. Ectosomes and exosomes-two extracellular vesicles that differ only in some details. Biochem Mol Biol J. 2:1–4.
  • Merrifield M, Kovalchuk O. 2013. Epigenetics in radiation biology: a new research frontier. Front Genet. 4:40.
  • Mettler FA, Upton AC. 2008. Medical effects of ionizing radiation. 3rd ed. Philadelphia (PA): Saunders/Elsevier.
  • Miller AC, Stewart M, Rivas R. 2010. Preconceptional paternal exposure to depleted uranium: transmission of genetic damage to offspring. Health Phys. 99(3):371–379.
  • Moore SR, Marsden S, MacDonald D, Mitchell S, Folkard M, Michae B, Goodhead D, Prise K, Kadhim M. 2005a. Genomic instability in human lymphocytes irradiated with individual charged particles: involvement of tumor necrosis factor alpha in irradiated cells but not bystander cells. Radiat Res. 163(2):183–190.
  • Moore SR, Ritter LE, Gibbons CF, Grosovsky AJ. 2005b. Spontaneous and radiation-induced genomic instability in human cell lines differing in cellular TP53 status. Radiat Res. 164 (4 Pt 1):357–368.
  • Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL. 1996. Genomic instability induced by ionizing radiation. Radiat Res. 146(3):247–258.
  • Morgan W. 2003a. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res. 159(5):567–580.2.0.CO;2]
  • Morgan W. 2003b. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res. 159(5):581–596.
  • Mothersill C, Seymour C. 1997. Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int J Radiat Biol. 71(4):421–427.
  • Mothersill C, Seymour CB, Joiner MC. 2002. Relationship between radiation-induced low-dose hypersensitivity and the bystander effect. Radiat Res. 157(5):526–532.
  • Mothersill C, Seymour RJ, Seymour CB. 2006. Increased radiosensitivity in cells of two human cell lines treated with bystander medium from irradiated repair-deficient cells. Radiat Res. 165(1):26–34.
  • Mothersill C, Seymour C. 2012. Changing paradigms in radiobiology. Mutat Res. 750(2):85–95.
  • Mothersill C, Smith RW, Fazzari J, McNeill F, Prestwich W, Seymour CB. 2012. Evidence for a physical component to the radiation-induced bystander effect? Int J Radiat Biol. 88(8):583–591.
  • Mothersill C, Seymour C. 2015. Radiation-induced non-targeted effects: some open questions. Radiat Prot Dosimetry. 166(1–4):125–130.
  • Mothersill C, Rusin A, Fernandez-Palomo C, Seymour C. 2018. History of bystander effects research 1905-present; what is in a name? Int J Radiat Biol. 94(8):696–707.
  • Mothersill C, Rusin A, Seymour C. 2019. Relevance of non-targeted effects for radiotherapy and diagnostic radiology; a historical and conceptual analysis of key players. Cancers. 11(9):1236.
  • Mukherjee D, Coates PJ, Lorimore SA, Wright EG. 2014. Responses to ionizing radiation mediated by inflammatory mechanisms. J Pathol. 232(3):289–299.
  • Nagasawa H, Little JB. 1992. Induction of sister chromatid exchanges by extremely low doses of alpha particles. Cancer Res. 52(22):6394–6396.
  • Narayanan P, Goodwin E, Lehnert B. 1997. α Particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res. 57(18):3963–3971.
  • Nagasawa H, Little JB. 2002. Bystander effect for chromosomal aberrations induced in wildtype and repair deficient CHO cells by low fluences of alpha particles. Mutat Res. 508(1–2):121–129.
  • Nagasawa H, Huo L, Little JB. 2003. Increased bystander mutagenic effect in DNA double-strand break repair-deficient mammalian cells. Int J Radiat Biol. 79(1):35–41.
  • Negrini S, Gorgoulis V, Halazonetis T. 2010. Genomic instability – an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 11(3):220–228.
  • O'Hagan H, Ljungman M. 2004. Nuclear accumulation of p53 following inhibition of transcription is not due to diminished levels of MDM2. Oncogene. 23(32):5505–5512.
  • Pant S, Hilton H, Burczynski ME. 2012. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem Pharmacol. 83(11):1484–1494.
  • Pikor L, Thu K, Vucic E, Lam W. 2013. The detection and implication of genome instability in cancer. Cancer Metastasis Rev. 32(3–4):341–352.
  • Ponnaiya B, Suzuki M, Tsuruoka C, Uchihori Y, Wei Y, Hei TK. 2011. Detection of chromosomal instability in bystander cells after Si490-ion irradiation. Radiat Res. 176(3):280–290.
  • Portess DI, Bauer G, Hill MA, O'Neill P. 2007. Low-dose irradiation of nontransformed cells stimulates the selective removal of precancerous cells via intercellular induction of apoptosis. Cancer Res. 67(3):1246–1253.
  • Pouget JP, Georgakilas A, Ravanat J. 2018. Targeted and off-target (bystander and abscopal) effects of radiation therapy: redox mechanisms and risk/benefit analysis. Antioxid Redox Signal. 29(15):1447–1487.
  • Qian Z, Shen Q, Yang X, Qiu Y, Zhang W. 2015. The role of extracellular vesicles: an epigenetic view of the cancer microenvironment. Biomed Res Int. 2015:649161. Radiat Res. 175(3):347–357.
  • Ratajczak M, Ratajczak J. 2020. Extracellular microvesicles/exosomes: discovery, disbelief, acceptance, and the future? Leukemia. 34(12):3126–3135.
  • Record M, Subra C, Silvente-Poirot S, Poirot M. 2011. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol. 81(10):1171–1182.
  • Rusin A, Lapied E, Le M, Seymour C, Oughton D, Haanes H, Mothersill C. 2019. Effect of gamma radiation on the production of bystander signals from three earthworm species irradiated in vivo. Environ Res. 168:211–221.
  • Sadallah S, Eken C, Schifferli JA. 2011. Ectosomes as modulators of inflammation and immunity. Clin Exp Immunol. 163(1):26–32.
  • Saeedi S, Israel S, Nagy C, Turecki G. 2019. The emerging role of exosomes in mental disorders. Transl Psychiatry. 9(1):122.
  • Salomaa S, Holmberg K, Lindholm C, Mustonen R, Tekkel M, Veidebaum T, Lambert B. 1998. Chromosomal instability in in vivo radiation exposed subjects. Int J Radiat Biol. 74(6):771–779.
  • Salomaa S, Wright EG, Hildebrandt G, Kadhim MA, Little MP, Prise KM, Belyakov OV. 2010. Editorial. Non-DNA targeted effects . Mutat Res. 687(1–2):1–2.
  • Sawant S, Randers-Pehrson G, Geard C, Brenner D, Hall E. 2001. The bystander effect in radiation oncogenesis: I. Transformation in C3H 10T 1/2 cells in vitro can be initiated in the unirradiated neighbors of irradiated cells. Radiat Res. 155(3):397–401.2.0.CO;2]
  • Schettino G, Folkard M, Michael BD, Prise KM. 2005. Low-dose binary behavior of bystander cell killing after microbeam irradiation of a single cell with focused c(k) X rays. Radiat Res. 163(3):332–336.
  • Seymour CB, Mothersill C. 2000. Relative contribution of bystander and targeted cell killing to the low-dose region of the radiation dose-response curve. Radiat Res. 153 (5 Pt 1):508–511.2.0.CO;2]
  • Shao C, Lyng FM, Folkard M, Prise KM. 2006. Calcium fluxes modulate the radiation-induced bystander responses in targeted glioma and fibroblast cells. Radiat Res. 166(3):479–487.
  • Sharma A. 2014. Bioinformatic analysis revealing association of exosomal mRNAs and proteins in epigenetic inheritance. J Theor Biol. 357:143–149.
  • Snyder AR, Morgan WF. 2003. Persistent oxidative stress and gene expression changes in radiationinduced genomic instability. Int Congr. 1258:199–206.
  • Sokolov MV, Smilenov LB, Hall EJ, Panyutin IG, Bonner WM, Sedelnikova OA. 2005. Ionizing radiation induces DNA double-strand breaks in bystander primary human fibroblasts. Oncogene. 24(49):7257–7265.
  • Sokolov MV, Dickey JS, Bonner WM, Sedelnikova OA. 2007. Gamma-H2AX in bystander cells: not just a radiation-triggered event, a cellular response to stress mediated by intercellular communication. Cell Cycle. 6(18):2210–2212.
  • Sowa Resat M, Morgan W. 2004. Radiation-induced genomic instability: a role for secreted soluble factors in communicating the radiation response to non-irradiated cells. J Cell Biochem. 92(5):1013–1019.
  • Stolzing A, Grune T. 2004. Neuronal apoptotic bodies: phagocytosis and degradation by primary microglial cells. Faseb J. 18(6):743–745.
  • Suman S, Kumar S, Moon B-H, Fornace AJ, Kallakury BVS, Datta K. 2017. Increased transgenerational intestinal tumorigenesis in offspring of ionizing radiation exposed parent APC1638N/+ mice. J Cancer. 8(10):1769–1773.
  • Tamminga J, Kovalchuk O. 2011. Role of DNA damage and epigenetic DNA methylation changes in radiation-induced genomic instability and bystander effects in germline in vivo. Curr Mol Pharmacol. 4(2):115–125.
  • Tanaka K, Kohda A, Toyokawa T, Ichinohe K, Oghiso Y. 2008. Chromosome aberration frequencies and chromosome instability in mice after long-term exposure to low-dose-rate gamma-irradiation. Mutat Res. 657(1):19–25.
  • Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al. 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 7(1):1535750.
  • Tubbs A, Nussenzweig A. 2017. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 168(4):644–656.
  • Tuncay Cagatay S, Mayah A, Mancuso M, Giardullo P, Pazzaglia S, Saran A, Daniel A, Traynor D, Meade Lyng F, Tapio S, et al. 2020. Phenotypic and functional characteristics of exosomes derived from irradiated mouse organs and their role in the mechanisms driving non-targeted effects. Int J Mol Sci. 21(21):8389.
  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9(6):654–659.
  • Veziroglu EM, Mias GI. 2020. Characterizing extracellular vesicles and their diverse RNA contents. Front Genet. 11:700.
  • Watson GE, Lorimore SA, Wright EG. 1996. Long-term in vivo transmission of alpha-particle-induced chromosomal instability in murine haemopoietic cells. Int J Radiat Biol. 69(2):175–182.
  • Watson GE, Pocock DA, Papworth D, Lorimore SA, Wright EG. 2001. In vivo chromosomal instability and transmissible aberrations in the progeny of haemopoietic stem cells induced by high- and low-LET radiations. Int J Radiat Biol. 77(4):409–417.
  • Werner E, Wang H, Doetsch PW. 2015. Role of pro-inflammatory cytokines in radiation-induced genomic instability in human bronchial epithelial cells. Radiat Res. 184(6):621–629.
  • Widel M. 2016. Radiation induced bystander effect: from in vitro studies to clinical application. IJMPCERO. 05(01):1–17.
  • Wortzel I, Dror S, Kenific C, Lyden D. 2019. Exosome-mediated metastasis: communication from a distance. Dev Cell. 49(3):347–360.
  • Wu LJ, Randers-Pehrson G, Xu A, Waldren CA, Geard CR, Yu Z, Hei TK. 1999. Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proc Natl Acad Sci USA. 96(9):4959–4964.
  • Yahyapour R, Salajegheh A, Safari A, Amini P, Rezaeyan A, Amraee A, Najafi M. 2018. Radiation-induced non-targeted effect and carcinogenesis; implications in clinical radiotherapy. J Biomed Phys Eng. 8(4):435–446.
  • Yang H, Asaad N, Held KD. 2005. Medium-mediated intercellular communication is involved in bystander responses of X-ray-irradiated normal human fibroblasts. Oncogene. 24(12):2096–2103.
  • Yu X, Harris SL, Levine AJ. 2006. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 66(9):4795–4801.
  • Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. 2015. Exosome and exosomal MicroRNA: trafficking, sorting, and function. Genom Proteom Bioinformat. 13(1):17–24.
  • Zhang Y, Liu Y, Liu H, Tang W.H 2019. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 9:19.
  • Zhu X, You Y, Li Q, Zeng C, Fu F, Guo A, Zhang H, Zou P, Zhong Z, Wang H, et al. 2014. BCR-ABL1-positive microvesicles transform normal hematopoietic transplants through genomic instability: implications for donor cell leukemia. Leukemia. 28(8):1666–1675.
  • Zhu A, Zhou H, Leloup C, Marino SA, Geard CR, Hei TK, Lieberman HB. 2005. Differential impact of mouse Rad9 deletion on ionizing radiation-induced bystander effects. Radiat Res. 164(5):655–661.