4,372
Views
11
CrossRef citations to date
0
Altmetric
Reflections and scientific reviews from established women scientists

The importance of hypoxia in radiotherapy for the immune response, metastatic potential and FLASH-RT

ORCID Icon, ORCID Icon & ORCID Icon
Pages 439-451 | Received 01 May 2021, Accepted 28 Sep 2021, Published online: 02 Nov 2021

References

  • Abolfath R, Grosshans D, Mohan R. 2020. Oxygen depletion in FLASH ultra-high-dose-rate radiotherapy: a molecular dynamics simulation. Med Phys. 47(12):6551–6561.
  • Adrian G, Konradsson E, Beyer S, Wittrup A, Butterworth KT, McMahon SJ, Ghita M, Petersson K, Ceberg C. 2021. Cancer cells can exhibit a sparing FLASH effect at low doses under normoxic in vitro-conditions. Front Oncol. 11:686142.
  • Adrian G, Konradsson E, Lempart M, Back S, Ceberg C, Petersson K. 2020. The FLASH effect depends on oxygen concentration. Br J Radiol. 93(1106):20190702.
  • Alaghband Y, Cheeks SN, Allen BD, Montay-Gruel P, Doan NL, Petit B, Jorge PG, Giedzinski E, Acharya MM, Vozenin MC, et al. 2020. Neuroprotection of radiosensitive juvenile mice by ultra-high dose rate FLASH irradiation. Cancers (Basel). 12(6):1671.
  • Alanazi A, Meesungnoen J, Jay-Gerin JP. 2021. A computer modeling study of water radiolysis at high dose rates. relevance to FLASH radiotherapy. Radiat Res. 195(2):149–162.
  • Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, et al. 2007. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 13(9):1050–1059.
  • Ashton TM, Fokas E, Kunz-Schughart LA, Folkes LK, Anbalagan S, Huether M, Kelly CJ, Pirovano G, Buffa FM, Hammond EM, et al. 2016. The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. Nat Commun. 7:12308.
  • Bai Y, Wang W, Li S, Zhan J, Li H, Zhao M, Zhou XA, Li S, Li X, Huo Y, et al. 2019. C1QBP promotes homologous recombination by stabilizing MRE11 and controlling the assembly and activation of MRE11/RAD50/NBS1 complex. Mol Cell. 75(6):1299–1314.e6.
  • Barcellos-Hoff MH, Dix TA. 1996. Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol. 10(9):1077–1083.
  • Benej M, Hong X, Vibhute S, Scott S, Wu J, Graves E, Le QT, Koong AC, Giaccia AJ, Yu B, et al. 2018. Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc Natl Acad Sci U S A. 115(42):10756–10761.
  • Bernier J, Denekamp J, Rojas A, Minatel E, Horiot J, Hamers H, Antognoni P, Dahl O, Richaud P, van Glabbeke M, et al. 2000. ARCON: accelerated radiotherapy with carbogen and nicotinamide in head and neck squamous cell carcinomas. The experience of the Co-operative group of radiotherapy of the european organization for research and treatment of cancer (EORTC). Radiother Oncol. 55(2):111–119.
  • Bertout J, Patel S, Simon MC. 2008. The impact of O2 availability on human cancer. Nat Rev Cancer. 8(12):967–975.
  • Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL, Freeman ML, Arteaga CL. 2007. Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest. 117(5):1305–1313.
  • Boscolo D, Scifoni E, Durante M, Kramer M, Fuss MC. 2021. May oxygen depletion explain the FLASH effect? A chemical track structure analysis. Radiother Oncol. 162:68–75.
  • Bouchard G, Bouvette G, Therriault H, Bujold R, Saucier C, Paquette B. 2013. Pre-irradiation of mouse mammary gland stimulates cancer cell migration and development of lung metastases. Br J Cancer. 109(7):1829–1838.
  • Bouchard G, Therriault H, Geha S, Berube-Lauziere Y, Bujold R, Saucier C, Paquette B. 2016. Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model. BMC Cancer. 16:361.
  • Bouchard G, Therriault H, Geha S, Bujold R, Saucier C, Paquette B. 2017. Radiation-induced lung metastasis development is MT1-MMP-dependent in a triple-negative breast cancer mouse model. Br J Cancer. 116(4):479–488.
  • Bourhis J, Montay-Gruel P, Goncalves Jorge P, Bailat C, Petit B, Ollivier J, Jeanneret-Sozzi W, Ozsahin M, Bochud F, Moeckli R, et al. 2019. Clinical translation of FLASH radiotherapy: why and how? Radiother Oncol. 139:11–17.
  • Bourhis J, Sozzi WJ, Jorge PG, Gaide O, Bailat C, Duclos F, Patin D, Ozsahin M, Bochud F, Germond JF, et al. 2019. Treatment of a first patient with FLASH-radiotherapy. Radiother Oncol. 139:18–22.
  • Buffa FM, Harris AL, West CM, Miller CJ. 2010. Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer. 102(2):428–435.
  • Buonanno M, Grilj V, Brenner DJ. 2019. Biological effects in normal cells exposed to FLASH dose rate protons. Radiother Oncol. 139:51–55.
  • Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV, Sevillano M, Nadal C, Jung P, Zhang XH, et al. 2012. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell. 22(5):571–584.
  • Cao X, Zhang R, Esipova TV, Rao Allu S, Ashraf MR, Rahman M, Gunn JR, Bruza P, Gladstone DJ, Williams BB, et al. 2021. Quantification of oxygen depletion during FLASH irradiation in vitro and in vivo. Inter J Rad Oncol Biol Physics. 111(1):240–248
  • Carroll VA, Ashcroft M. 2006. Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res. 66(12):6264–6270.
  • Chan DA, Giaccia AJ. 2007. Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev. 26(2):333–339.
  • Chiu DK, Tse AP, Xu IM, Di Cui J, Lai RK, Li LL, Koh HY, Tsang FH, Wei LL, Wong CM, et al. 2017. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat Commun. 8(1):517.
  • Chiu DK, Xu IM, Lai RK, Tse AP, Wei LL, Koh HY, Li LL, Lee D, Lo RC, Wong CM, et al. 2016. Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology. 64(3):797–813.
  • Chouaib S, Noman MZ, Kosmatopoulos K, Curran MA. 2017. Hypoxic stress: Obstacles and opportunities for innovative immunotherapy of cancer. Oncogene. 36(4):439–445.
  • Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, et al. 2010. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment . J Exp Med. 207(11):2439–2453.
  • Cowen RL, Garside EJ, Fitzpatrick B, Papadopoulou MV, Williams KJ. 2008. Gene therapy approaches to enhance bioreductive drug treatment. Br J Radiol. 81(Spec No 1):S45–S56.
  • Criswell T, Leskov K, Miyamoto S, Luo G, Boothman D. 2003. Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene. 22(37):5813–5827.
  • Dearling JL, Qureshi U, Begent RH, Pedley RB. 2007. Combining radioimmunotherapy with antihypoxia therapy 2-deoxy-D-glucose results in reduction of therapeutic efficacy. Clin Cancer Res. 13(6):1903–1910.
  • Demaria S, Golden EB, Formenti SC. 2015. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol. 1(9):1325.
  • Diffenderfer ES, Verginadis II, Kim MM, Shoniyozov K, Velalopoulou A, Goia D, Putt M, Hagan S, Avery S, Teo K, et al. 2020. Design, Implementation, and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System. Int J Radiat Oncol Biol Phys. 106(2):440–448.
  • D'Ignazio L, Bandarra D, Rocha S. 2016. NF-kappaB and HIF crosstalk in immune responses. Febs J. 283(3):413–424.
  • D'Ignazio L, Shakir D, Batie M, Muller HA, Rocha S. 2020. HIF-1beta positively regulates NF-kappaB activity via direct control of TRAF6. Int J Mol Sci. 21(8):3000.
  • Dillon MT, Bergerhoff KF, Pedersen M, Whittock H, Crespo-Rodriguez E, Patin EC, Pearson A, Smith HG, Paget JTE, Patel RR, et al. 2019. ATR inhibition potentiates the radiation-induced inflammatory tumor microenvironment. Clin Cancer Res. 25(11):3392–3403.
  • Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, Coussens LM, Karin M, Goldrath AW, Johnson RS. 2010. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res. 70(19):7465–7475.
  • Dunphy G, Flannery SM, Almine JF, Connolly DJ, Paulus C, Jønsson KL, Jakobsen MR, Nevels MM, Bowie AG, Unterholzner L. 2018. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 Mediates NF-κB signaling after nuclear DNA damage. Mol Cell. 71(5):745–760.e5.
  • Durante M, Brauer-Krisch E, Hill M. 2018. Faster and safer? FLASH ultra-high dose rate in radiotherapy. Br J Radiol. 91(1082):20170628.
  • Eckert F, Zwirner K, Boeke S, Thorwarth D, Zips D, Huber SM. 2019. Rationale for combining radiotherapy and immune checkpoint inhibition for patients with hypoxic tumors. Front Immunol. 10:407.
  • Elvington M, Scheiber M, Yang X, Lyons K, Jacqmin D, Wadsworth C, Marshall D, Vanek K, Tomlinson S. 2014. Complement-dependent modulation of antitumor immunity following radiation therapy. Cell Rep. 8(3):818–830.
  • Eustace A, Mani N, Span PN, Irlam JJ, Taylor J, Betts GN, Denley H, Miller CJ, Homer JJ, Rojas AM, et al. 2013. A 26-gene hypoxia signature predicts benefit from hypoxia-modifying therapy in laryngeal cancer but not bladder cancer. Clin Cancer Res. 19(17):4879–4888.
  • Favaudon V, Caplier L, Monceau V, Pouzoulet F, Sayarath M, Fouillade C, Poupon MF, Brito I, Hupe P, Bourhis J, et al. 2014. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 6(245):245–ra293.
  • Fokas E, Prevo R, Pollard JR, Reaper PM, Charlton PA, Cornelissen B, Vallis KA, Hammond EM, Olcina MM, Gillies McKenna W, et al. 2012. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis. 3:e441.
  • Foskolou IP, Jorgensen C, Leszczynska KB, Olcina MM, Tarhonskaya H, Haisma B, D’Angiolella V, Myers WK, Domene C, Flashman E, et al. 2017. Ribonucleotide reductase requires subunit switching in hypoxia to maintain DNA replication. Mol Cell. 66(2):206–220.e9.
  • Fouillade C, Curras-Alonso S, Giuranno L, Quelennec E, Heinrich S, Bonnet-Boissinot S, Beddok A, Leboucher S, Karakurt HU, Bohec M, et al. 2020. FLASH irradiation spares lung progenitor cells and limits the incidence of radio-induced senescence. Clin Cancer Res. 26(6):1497–1506.
  • Giaccia A. 1996. Hypoxic stress proteins: survival of the fittest. Semin Radiat Oncol. 6(1):46–58.
  • Greer SN, Metcalf JL, Wang Y, Ohh M. 2012. The updated biology of hypoxia-inducible factor. Embo J. 31(11):2448–2460.
  • Gu Q, He Y, Ji J, Yao Y, Shen W, Luo J, Zhu W, Cao H, Geng Y, Xu J, et al. 2015. Hypoxia-inducible factor 1α (HIF-1α) and reactive oxygen species (ROS) mediates radiation-induced invasiveness through the SDF-1α/CXCR4 pathway in non-small cell lung carcinoma cells . Oncotarget. 6(13):10893–10907.
  • Hall EJ, Brenner DJ. 1991. The dose-rate effect revisited: radiobiological considerations of importance in radiotherapy. Int J Radiat Oncol Biol Phys. 21(6):1403–1414.
  • Hall EJ, Giaccia AJ. 2019. Radiobiology for the radiologist. 8th edn. Philadelphia: Wolters Kluwer.
  • Hammond EM, Asselin MC, Forster D, O'Connor JPB, Senra JM, Williams KJ. 2014. The meaning, measurement and modification of hypoxia in the laboratory and the clinic. Clin Oncol (R Coll Radiol). 26(5):277–288.
  • Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ. 2002. Hypoxia Links ATR and p53 through replication arrest. Mol Cell Biol. 22(6):1834–1843.
  • Hanahan D, Coussens LM. 2012. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 21(3):309–322.
  • Harris BH, Barberis A, West CM, Buffa FM. 2015. Gene expression signatures as biomarkers of tumour hypoxia. Clin Oncol. 27(10):547–560.
  • Hasvold G, Lund-Andersen C, Lando M, Patzke S, Hauge S, Suo Z, Lyng H, Syljuasen RG. 2016. Hypoxia-induced alterations of G2 checkpoint regulators. Mol Oncol. 10(5):764–773.
  • Hendry JH, Moore JV, Hodgson BW, Keene JP. 1982. The constant low oxygen concentration in all the target cells for mouse tail radionecrosis. Radiat Res. 92(1):172–181.
  • Henze A-T, Mazzone M. 2016. The impact of hypoxia on tumor-associated macrophages. J Clin Invest. 126(10):3672–3679.
  • Hillestad T, Hompland T, Fjeldbo CS, Skingen VE, Salberg UB, Aarnes EK, Nilsen A, Lund KV, Evensen TS, Kristensen GB, et al. 2020. MRI distinguishes tumor hypoxia levels of different prognostic and biological significance in cervical cancer. Cancer Res. 80(18):3993–4003.
  • Höckel M, Vaupel P. 2001. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 93(4):266–276.
  • House CD, Jordan E, Hernandez L, Ozaki M, James JM, Kim M, Kruhlak MJ, Batchelor E, Elloumi F, Cam MC, et al. 2017. NFkB promotes ovarian tumorigenesis via classical pathways that support proliferative cancer cells and alternative pathways that support ALDHþcancer stem–like cells. Cancer Res. 77(24):6927–6940.
  • Hsu TS, Lin YL, Wang YA, Mo ST, Chi PY, Lai AC, Pan HY, Chang YJ, Lai MZ. 2020. HIF-2α is indispensable for regulatory T cell function. Nat Commun. 11(1):5005.
  • Illa-Bochaca I, Ouyang H, Tang J, Sebastiano C, Mao JH, Costes SV, Demaria S, Barcellos-Hoff MH. 2014. Densely ionizing radiation acts via the microenvironment to promote aggressive Trp53-null mammary carcinomas. Cancer Res. 74(23):7137–7148.
  • Im JH, Buzzelli JN, Jones K, Franchini F, Gordon-Weeks A, Markelc B, Chen J, Kim J, Cao Y, Muschel RJ. 2020. FGF2 alters macrophage polarization, tumour immunity and growth and can be targeted during radiotherapy. Nat Commun. 11(1):4064.
  • Jansen J, Knoll J, Beyreuther E, Pawelke J, Skuza R, Hanley R, Brons S, Pagliari F, Seco J. 2021. Does FLASH deplete Oxygen? experimental evaluation for photons, protons and carbon ions. Med Phys. 48(7):3982–3990.
  • Jayaprakash P, Ai M, Liu A, Budhani P, Bartkowiak T, Sheng J, Ager C, Nicholas C, Jaiswal AR, Sun Y, et al. 2018. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. J Clin Invest. 128(11):5137–5149.
  • Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S, Oh JM, Gwak SH, Yoo MY, Lee MS, et al. 2019. Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 79(4):795–806.
  • Jeong Y, Hoang NT, Lovejoy A, Stehr H, Newman AM, Gentles AJ, Kong W, Truong D, Martin S, Chaudhuri A, et al. 2017. Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiation resistance. Cancer Discov. 7(1):86–101.
  • Jin JY, Gu A, Wang W, Oleinick NL, Machtay M, Spring Kong FM. 2020. Ultra-high dose rate effect on circulating immune cells: a potential mechanism for FLASH effect? Radiother Oncol. 149:55–62.
  • Jones KI, Tiersma J, Yuzhalin AE, Gordon‐Weeks AN, Buzzelli J, Im JH, Muschel RJ. 2018. Radiation combined with macrophage depletion promotes adaptive immunity and potentiates checkpoint blockade. EMBO Mol Med. 10(12):e9342.
  • Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L. 2003. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. Faseb J. 17(14):2115–2117.
  • Kambach DM, Sodi VL, Lelkes PI, Azizkhan-Clifford J, Reginato MJ. 2014. ErbB2, FoxM1 and 14-3-3ζ prime breast cancer cells for invasion in response to ionizing radiation. Oncogene. 33(5):589–598.
  • Kaplan HS, Murphy ED. 1949. The effect of local roentgen irradiation on the biological behavior of a transplantable mouse carcinoma; increased frequency of pulmonary metastasis. J Natl Cancer Inst. 9(5-6):407–413.
  • Karin M. 2006. Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436.
  • Khan S, Bassenne M, Wang J, Manjappa R, Melemenidis S, Breitkreutz DY, Maxim PG, Xing L, Loo BW, Jr., Pratx G. 2021. Multicellular spheroids as in vitro models of oxygen depletion during FLASH irradiation. Int J Radiat Oncol Biol Phys. 110:833–844.
  • Konradsson E, Arendt ML, Bastholm Jensen K, Børresen B, Hansen AE, Bäck S, Kristensen AT, Munck af Rosenschöld P, Ceberg C, Petersson K. 2021. Establishment and initial experience of clinical FLASH radiotherapy in canine cancer patients. Front Oncol. 11:1727.
  • Krock BL, Skuli N, Simon MC. 2011. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2(12):1117–1133.
  • Kuo P, Le QT. 2014. Galectin-1 links tumor hypoxia and radiotherapy. Glycobiology. 24(10):921–925.
  • Labarbe R, Hotoiu L, Barbier J, Favaudon V. 2020. A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect. Radiother Oncol. 153:303–310.
  • LaGory EL, Giaccia AJ. 2016. The ever-expanding role of HIF in tumour and stromal biology. Nat Cell Biol. 18(4):356–365.
  • Lai Y, Jia X, Chi Y. 2021. Modeling the effect of oxygen on the chemical stage of water radiolysis using GPU-based microscopic Monte Carlo simulations, with an application in FLASH radiotherapy. Phys Med Biol. 66(2):025004.
  • Lan Y, Moustafa M, Knoll M, Xu C, Furkel J, Lazorchak A, Yeung TL, Hasheminasab SM, Jenkins MH, Meister S, et al. 2021. Simultaneous targeting of TGF-beta/PD-L1 synergizes with radiotherapy by reprogramming the tumor microenvironment to overcome immune evasion. Cancer Cell. S1535-6108(21)00448–00447.
  • Le Q-T, Shi G, Cao H, Nelson DW, Wang Y, Chen EY, Zhao S, Kong C, Richardson D, O'Byrne KJ, et al. 2005. Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol. 23(35):8932–8941.
  • Lee J, Lee J, Farquhar KS, Yun J, Frankenberger CA, Bevilacqua E, Yeung K, Kim EJ, Balazsi G, Rosner MR. 2014. Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions. Proc Natl Acad Sci U S A. 111(3):E364–373.
  • Lee J, Yesilkanal AE, Wynne JP, Frankenberger C, Liu J, Yan J, Elbaz M, Rabe DC, Rustandy FD, Tiwari P, et al. 2019. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature. 568(7751):254–258.
  • Leung TH-Y, Tang HW-M, Siu MK-Y, Chan DW, Chan KK-L, Cheung AN-Y, Ngan HY-S. 2018. Human papillomavirus E6 protein enriches the CD55(+) population in cervical cancer cells, promoting radioresistance and cancer aggressiveness. J Pathol. 244(2):151–163.
  • Levy K, Natarajan S, Wang J, Chow S, Eggold JT, Loo PE, Manjappa R, Melemenidis S, Lartey FM, Schuler E, et al. 2020. Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci Rep. 10(1):21600.
  • Liew H, Mein S, Dokic I, Haberer T, Debus J, Abdollahi A, Mairani A. 2021. Deciphering time-dependent DNA damage complexity, repair, and oxygen tension: a mechanistic model for FLASH-dose-rate radiation therapy. Int J Radiat Oncol Biol Phys. 110(2):574–586.
  • Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, Pass HI, Bhutkar AJ, Tsirigos A, Ueberheide B, et al. 2019. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell. 178(2):316–329 e318.
  • Loo BW, Schuler E, Lartey FM, Rafat M, King GJ, Trovati S, Koong AC, Maxim PG. 2017. (P003) delivery of ultra-rapid flash radiation therapy and demonstration of normal tissue sparing after abdominal irradiation of mice. Inter J Rad Oncol Biol Phys. 98(2):E16.
  • Lyng H, Vorren AO, Sundfor K, Taksdal I, Lien HH, Kaalhus O, Rofstad EK. 2001. Assessment of tumor oxygenation in human cervical carcinoma by use of dynamic Gd-DTPA-enhanced MR imaging. J Magn Reson Imaging. 14(6):750–756.
  • Ma Y, Conforti R, Aymeric L, Locher C, Kepp O, Kroemer G, Zitvogel L. 2011. How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer Metastasis Rev. 30(1):71–82.
  • Martin M, Vozenin MC, Gault N, Crechet F, Pfarr CM, Lefaix JL. 1997. Coactivation of AP-1 activity and TGF-beta1 gene expression in the stress response of normal skin cells to ionizing radiation. Oncogene. 15(8):981–989.
  • Martin OA, Anderson RL, Russell PA, Cox RA, Ivashkevich A, Swierczak A, Doherty JP, Jacobs DH, Smith J, Siva S, et al. 2014. Mobilization of viable tumor cells into the circulation during radiation therapy. Int J Radiat Oncol Biol Phys. 88(2):395–403.
  • Matuleviciute R, Cunha PP, Johnson RS, Foskolou IP. 2021. Oxygen regulation of TET enzymes. Febs J. DOI:https://doi.org/10.1111/febs.15695.
  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. 1999. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 399(6733):271–275.
  • McCarthy HO, Yakkundi A, McErlane V, Hughes CM, Keilty G, Murray M, Patterson LH, Hirst DG, McKeown SR, Robson T. 2003. Bioreductive GDEPT using cytochrome P450 3A4 in combination with AQ4N. Cancer Gene Ther. 10(1):40–48.
  • McDonald JT, Kim K, Norris AJ, Vlashi E, Phillips TM, Lagadec C, Della Donna L, Ratikan J, Szelag H, Hlatky L, et al. 2010. Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res. 70(21):8886–8895.
  • McErlane V, Yakkundi A, McCarthy HO, Hughes CM, Patterson LH, Hirst DG, Robson T, McKeown SR. 2005. A cytochrome P450 2B6 meditated gene therapy strategy to enhance the effects of radiation or cyclophosphamide when combined with the bioreductive drug AQ4N. J Gene Med. 7(7):851–859.
  • McKeown SR, Cowen RL, Williams KJ. 2007. Bioreductive drugs: from concept to clinic. Clin Oncol (R Coll Radiol). 19(6):427–442.
  • Mehibel M, Xu Y, Li CG, Moon EJ, Thakkar KN, Diep AN, Kim RK, Bloomstein JD, Xiao Y, Bacal J, et al. 2021. Eliminating hypoxic tumor cells improves response to PARP inhibitors in homologous recombination-deficient cancer models. J Clin Invest. 131(11):e146256.
  • Mijaljica D, Prescott M, Devenish RJ. 2010. The intricacy of nuclear membrane dynamics during nucleophagy. Nucleus. 1(3):213–223.
  • Milas L, Hunter N, Peters LJ. 1987. The tumor bed effect: dependence of tumor take, growth rate, and metastasis on the time interval between irradiation and tumor cell transplantation. Int J Radiat Oncol Biol Phys. 13(3):379–383.
  • Mistry IN, Thomas M, Calder EDD, Conway SJ, Hammond EM. 2017. Clinical Advances of Hypoxia-Activated Prodrugs in Combination With Radiation Therapy. Int J Radiat Oncol Biol Phys. 98(5):1183–1196.
  • Moeller BJ, Cao Y, Li CY, Dewhirst MW. 2004. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell. 5(5):429–441.
  • Montay-Gruel P, Acharya MM, Goncalves Jorge P, Petit B, Petridis IG, Fuchs P, Leavitt R, Petersson K, Gondre M, Ollivier J, et al. 2021. Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clin Cancer Res. 27(3):775–784.
  • Montay-Gruel P, Acharya MM, Petersson K, Alikhani L, Yakkala C, Allen BD, Ollivier J, Petit B, Jorge PG, Syage AR, et al. 2019. Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proc Natl Acad Sci USA. 116(22):10943–10951.
  • Montay-Gruel P, Bouchet A, Jaccard M, Patin D, Serduc R, Aim W, Petersson K, Petit B, Bailat C, Bourhis J, et al. 2018. X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiother Oncol. 129(3):582–588.
  • Montay-Gruel P, Petersson K, Jaccard M, Boivin G, Germond JF, Petit B, Doenlen R, Favaudon V, Bochud F, Bailat C, et al. 2017. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s. Radiother Oncol. 124(3):365–369.
  • Moon EJ, Giaccia A. 2015. Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment. Free Radic Biol Med. 79:292–299.
  • Moon EJ, Mello SS, Li CG, Chi JT, Thakkar K, Kirkland JG, Lagory EL, Lee IJ, Diep AN, Miao Y, et al. 2021. The HIF target MAFF promotes tumor invasion and metastasis through IL11 and STAT3 signaling. Nat Commun. 12(1):4308.
  • Murthy A, Gerber SA, Koch CJ, Lord EM. 2019. Intratumoral hypoxia reduces IFN-γ-mediated immunity and MHC Class I induction in a preclinical tumor model. Immunohorizons. 3(4):149–160.
  • Nambiar DK, Aguilera T, Cao H, Kwok S, Kong C, Bloomstein J, Wang Z, Rangan VS, Jiang D, von Eyben R, et al. 2019. Galectin-1-driven T cell exclusion in the tumor endothelium promotes immunotherapy resistance. J Clin Invest. 129(12):5553–5567.
  • Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S. 2014. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 211(5):781–790.
  • Nordsmark M, Bentzen SM, Rudat V, Brizel D, Lartigau E, Stadler P, Becker A, Adam M, Molls M, Dunst J, et al. 2005. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol. 77(1):18–24.
  • Nordsmark M, Loncaster J, Aquino-Parsons C, Chou SC, Gebski V, West C, Lindegaard JC, Havsteen H, Davidson SE, Hunter R, et al. 2006. The prognostic value of pimonidazole and tumour pO2 in human cervix carcinomas after radiation therapy: a prospective international multi-center study. Radiother Oncol. 80(2):123–131.
  • Nordsmark M, Loncaster J, Chou SC, Havsteen H, Lindegaard JC, Davidson SE, Varia M, West C, Hunter R, Overgaard J, et al. 2001. Invasive oxygen measurements and pimonidazole labeling in human cervix carcinoma. Int J Radiat Oncol Biol Phys. 49(2):581–586.
  • Nordsmark M, Overgaard J. 2004. Tumor hypoxia is independent of hemoglobin and prognostic for loco-regional tumor control after primary radiotherapy in advanced head and neck cancer. Acta Oncol. 43(4):396–403.
  • Nordsmark M, Overgaard M, Overgaard J. 1996. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol. 41(1):31–39.
  • Obeid M, Panaretakis T, Joza N, Tufi R, Tesniere A, van Endert P, Zitvogel L, Kroemer G. 2007. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 14(10):1848–1850.
  • O'Connor LJ, Cazares-Korner C, Saha J, Evans CN, Stratford MR, Hammond EM, Conway SJ. 2016. Design, synthesis and evaluation of molecularly targeted hypoxia-activated prodrugs. Nat Protoc. 11(4):781–794.
  • Olcina MM, Melemenidis S, Nambiar DK, Kim RK, Casey KM, von Eyben R, Woodruff TM, Graves EG, Le QT, Stucki M. Giaccia AJ. 2020. Targeting C5aR1 increases the therapeutic window of radiotherapy. bioRxiv.
  • Olcina MM, Balanis NG, Kim RK, Aksoy BA, Kodysh J, Thompson MJ, Hammerbacher J, Graeber TG, Giaccia AJ. 2018. Mutations in an innate immunity pathway are associated with poor overall survival outcomes and hypoxic signaling in cancer. Cell Rep. 25(13):3721–3732.e3726.
  • Olcina MM, Foskolou IP, Anbalagan S, Senra JM, Pires IM, Jiang Y, Ryan AJ, Hammond EM. 2013. Replication stress and chromatin context link ATM activation to a role in DNA replication. Mol Cell. 52(5):758–766.
  • Olcina MM, Kim RK, Balanis NG, Li CG, von Eyben R, Graeber TG, Ricklin D, Stucki M, Giaccia AJ. 2020. Intracellular C4BPA levels regulate NF-κB-dependent apoptosis. iScience. 23(10):101594.
  • Olcina MM, Kim RK, Melemenidis S, Graves EE, Giaccia AJ. 2019. The tumour microenvironment links complement system dysregulation and hypoxic signalling. Br J Radiol. 92:20180069.
  • O'Rourke M, Ward C, Worthington J, McKenna J, Valentine A, Robson T, Hirst DG, McKeown SR. 2008. Evaluation of the antiangiogenic potential of AQ4N. Clin Cancer Res. 14(5):1502–1509.
  • Overgaard J. 2011. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck – A systematic review and meta-analysis. Radiother Oncol. 100(1):22–32.
  • Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, Massague J. 2008. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 133(1):66–77.
  • Palazon A, Goldrath AW, Nizet V, Johnson RS. 2014. HIF transcription factors, inflammation, and immunity. Immunity. 41(4):518–528.
  • Park JK, Jang SJ, Kang SW, Park S, Hwang SG, Kim WJ, Kang JH, Um HD. 2012. Establishment of animal model for the analysis of cancer cell metastasis during radiotherapy. Radiat Oncol. 7:153.
  • Pawelke J, Brand M, Hans S, Hideghety K, Karsch L, Lessmann E, Lock S, Schurer M, Szabo ER, Beyreuther E. 2021. Electron dose rate and oxygen depletion protect zebrafish embryos from radiation damage. Radiother Oncol. 158:7–12.
  • Petersson K, Adrian G, Butterworth K, McMahon SJ. 2020. A quantitative analysis of the role of oxygen tension in FLASH radiation therapy. Int J Radiat Oncol Biol Phys. 107(3):539–547.
  • Pilones KA, Vanpouille-Box C, Demaria S. 2015. Combination of radiotherapy and immune checkpoint inhibitors. Semin Radiat Oncol. 25(1):28–33.
  • Pires IM, Bencokova Z, Milani M, Folkes LK, Li JL, Stratford MR, Harris AL, Hammond EM. 2010. Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability. Cancer Res. 70(3):925–935.
  • Pires IM, Olcina MM, Anbalagan S, Pollard JR, Reaper PM, Charlton PA, McKenna WG, Hammond EM. 2012. Targeting radiation-resistant hypoxic tumour cells through ATR inhibition. Br J Cancer. 107(2):291–299.
  • Pratx G, Kapp DS. 2019. A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio. Phys Med Biol. 64(18):185005.
  • Qiang L, Shah P, Barcellos-Hoff MH, He YY. 2016. TGF-β signaling links E-cadherin loss to suppression of nucleotide excision repair. Oncogene. 35(25):3293–3302.
  • Rafat M, Aguilera TA, Vilalta M, Bronsart LL, Soto LA, von Eyben R, Golla MA, Ahrari Y, Melemenidis S, Afghahi A, et al. 2018. Macrophages promote circulating tumor cell-mediated local recurrence following radiotherapy in immunosuppressed patients. Cancer Res. 78(15):4241–4252.
  • Ramachandran S, Ma TS, Griffin J, Ng N, Foskolou IP, Hwang MS, Victori P, Cheng WC, Buffa FM, Leszczynska KB, et al. 2021. Hypoxia-induced SETX links replication stress with the unfolded protein response. Nat Commun. 12(1):3686.
  • Rankin EB, Giaccia AJ. 2016. Hypoxic control of metastasis. Science. 352(6282):175–180.
  • Riekki R, Jukkola A, Sassi ML, Hoyhtya M, Kallioinen M, Risteli J, Oikarinen A. 2000. Modulation of skin collagen metabolism by irradiation: collagen synthesis is increased in irradiated human skin. Br J Dermatol. 142(5):874–880.
  • Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M. 2008. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453:807–811.
  • Rodriguez-Ruiz ME, Rodriguez I, Mayorga L, Labiano T, Barbes B, Etxeberria I, Ponz-Sarvise M, Azpilikueta A, Bolanos E, Sanmamed MF, et al. 2019. TGFβ Blockade Enhances Radiotherapy Abscopal Efficacy Effects in Combination with Anti-PD1 and Anti-CD137 Immunostimulatory Monoclonal Antibodies. Mol Cancer Ther. 18(3):621–631.
  • Rofstad EK, Mathiesen B, Henriksen K, Kindem K, Galappathi K. 2005. The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Res. 65(6):2387–2396.
  • Rothwell BC, Kirkby NF, Merchant MJ, Chadwick AL, Lowe M, Mackay RI, Hendry JH, Kirkby KJ. 2021. Determining the parameter space for effective oxygen depletion for FLASH radiation therapy. Phys Med Biol. 66(5):055020.
  • Roumenina LT, Daugan MV, Petitprez F, Sautès-Fridman C, Fridman WH. 2019. Context-dependent roles of complement in cancer. Nat Rev Cancer. 19(12):698–715.
  • Rube CE, Uthe D, Schmid KW, Richter KD, Wessel J, Schuck A, Willich N, Rube C. 2000. Dose-dependent induction of transforming growth factor beta (TGF-beta) in the lung tissue of fibrosis-prone mice after thoracic irradiation. Int J Radiat Oncol Biol Phys. 47(4):1033–1042.
  • Shimura T, Sasatani M, Kawai H, Kamiya K, Kobayashi J, Komatsu K, Kunugita N. 2018. Radiation-induced myofibroblasts promote tumor growth via mitochondrial ROS-activated TGFβ signaling. Mol Cancer Res. 16(11):1676–1686.
  • Simmons DA, Lartey FM, Schuler E, Rafat M, King G, Kim A, Ko R, Semaan S, Gonzalez S, Jenkins M, et al. 2019. Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiother Oncol. 139:4–10.
  • Skwarska A, Calder EDD, Sneddon D, Bolland H, Odyniec ML, Mistry IN, Martin J, Folkes LK, Conway SJ, Hammond EM. 2021. Development and pre-clinical testing of a novel hypoxia-activated KDAC inhibitor. Cell Chem Biol. 28(9):1258–1270 e1213.
  • Sorensen BS, Horsman MR. 2020. Tumor hypoxia: impact on radiation therapy and molecular pathways. Front Oncol. 10:562.
  • Soto LA, Casey KM, Wang J, Blaney A, Manjappa R, Breitkreutz D, Skinner L, Dutt S, Ko RB, Bush K, et al. 2020. FLASH irradiation results in reduced severe skin toxicity compared to conventional-dose-rate irradiation. Radiat Res. 194(6):618–624.
  • Spitz DR, Buettner GR, Petronek MS, St-Aubin JJ, Flynn RT, Waldron TJ, Limoli CL. 2019. An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses. Radiother Oncol. 139:23–27.
  • Stenstrom KW, Vermund H, Mosser DG, Marvin JF. 1955. Effects of roentgen irradiation on the tumor bed. I. The inhibiting action of local pretransplantation roentgen irradiation (1500 r alpha) on the growth of mouse mammary carcinoma. Radiat Res. 2(2):180–191.
  • Sun M, Song CX, Huang H, Frankenberger CA, Sankarasharma D, Gomes S, Chen P, Chen J, Chada KK, He C, et al. 2013. HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proc Natl Acad Sci USA. 110(24):9920–9925.
  • Sundahl N, Duprez F, Ost P, De Neve W, Mareel M. 2018. Effects of radiation on the metastatic process. Mol Med. 24(1):16.
  • Surace L, Lysenko V, Fontana AO, Cecconi V, Janssen H, Bicvic A, Okoniewski M, Pruschy M, Dummer R, Neefjes J, et al. 2015. Complement is a central mediator of radiotherapy-induced tumor-specific immunity and clinical response. Immunity. 42(4):767–777.
  • Vaes RDW, Hendriks LEL, Vooijs M, De Ruysscher D. 2021. Biomarkers of radiotherapy-induced immunogenic cell death. Cells. 10(4):930.
  • van Uden P, Kenneth NS, Rocha S. 2008. Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J. 412(3):477–484.
  • Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC, Demaria S. 2017. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 8:15618.
  • Vilalta M, Rafat M, Giaccia AJ, Graves EE. 2014. Recruitment of circulating breast cancer cells is stimulated by radiotherapy. Cell Rep. 8(2):402–409.
  • von Essen CF. 1991. Radiation enhancement of metastasis: a review. Clin Exp Metastasis. 9(2):77–104.
  • Vozenin MC, De Fornel P, Petersson K, Favaudon V, Jaccard M, Germond JF, Petit B, Burki M, Ferrand G, Patin D, et al. 2019. The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clin Cancer Res. 25(1):35–42.
  • Vozenin MC, Hendry JH, Limoli CL. 2019. Biological benefits of ultra-high dose rate FLASH radiotherapy: sleeping beauty awoken. Clin Oncol (R Coll Radiol). 31(7):407–415.
  • Wang GL, Semenza GL. 1993. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA. 90(9):4304–4308.
  • Wang Y, Meng A, Lang H, Brown SA, Konopa JL, Kindy MS, Schmiedt RA, Thompson JS, Zhou D. 2004. Activation of nuclear factor kappaB In vivo selectively protects the murine small intestine against ionizing radiation-induced damage. Cancer Res. 64(17):6240–6246.
  • Wardman p. 2020. radiotherapy using high-intensity pulsed radiation beams (flash): a Radiation-chemical perspective. Radiat Res. 194(6):607–617.
  • Weber AM, Ryan AJ. 2015. ATM and ATR as therapeutic targets in cancer. Pharmacol Ther. 149:124–138.
  • Weiss H, Epp ER, Heslin JM, Ling CC, Santomasso A. 1974. Oxygen depletion in cells irradiated at ultra-high dose-rates and at conventional dose-rates. Int J Radiat Biol Relat Stud Phys Chem Med. 26(1):17–29.
  • Westendorf AM, Skibbe K, Adamczyk A, Buer J, Geffers R, Hansen W, Pastille E, Jendrossek V. 2017. Hypoxia enhances immunosuppression by inhibiting CD4+ effector T cell function and promoting treg activity. Cell Physiol Biochem. 41(4):1271–1284.
  • Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W. 2001. Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res. 61(6):2744–2750.
  • Williams KJ, Telfer BA, Xenaki D, Sheridan MR, Desbaillets I, Peters HJ, Honess D, Harris AL, Dachs GU, van der Kogel A, et al. 2005. Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1. Radiother Oncol. 75(1):89–98.
  • Wilson JD, Hammond EM, Higgins GS, Petersson K. 2019. Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold? Front Oncol. 9:1563.
  • Wilson WR, Hay MP. 2011. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 11(6):393–410.
  • Winter SC, Buffa FM, Silva P, Miller C, Valentine HR, Turley H, Shah KA, Cox GJ, Corbridge RJ, Homer JJ, et al. 2007. Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res. 67(7):3441–3449.
  • Wirsdorfer F, Cappuccini F, Niazman M, de Leve S, Westendorf AM, Ludemann L, Stuschke M, Jendrossek V. 2014. Thorax irradiation triggers a local and systemic accumulation of immunosuppressive CD4+ FoxP3+ regulatory T cells. Radiat Oncol. 9:98.
  • Wouters BG, Koritzinsky M. 2008. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 8(11):851–864.
  • Yan M, Jene N, Byrne D, Millar EK, O'Toole SA, McNeil CM, Bates GJ, Harris AL, Banham AH, Sutherland RL, et al. 2011. Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers. Breast Cancer Res. 13(2):R47.
  • Yang J, Staples O, Thomas LW, Briston T, Robson M, Poon E, Simoes ML, El-Emir E, Buffa FM, Ahmed A, et al. 2012. Human CHCHD4 mitochondrial proteins regulate cellular oxygen consumption rate and metabolism and provide a critical role in hypoxia signaling and tumor progression. J Clin Invest. 122(2):600–611.
  • Yoshimura M, Itasaka S, Harada H, Hiraoka M. 2013. Microenvironment and radiation therapy. Biomed Res Int. 2013:685308.
  • Zackrisson B, Franzen L, Henriksson R, Littbrand B, Stratford M, Dennis M, Rojas AM, Denekamp J. 1994. Acute effects of accelerated radiotherapy in combination with carbogen breathing and nicotinamide (ARCON). Acta Oncol. 33(4):377–381.
  • Zannella VE, Dal Pra A, Muaddi H, McKee TD, Stapleton S, Sykes J, Glicksman R, Chaib S, Zamiara P, Milosevic M, et al. 2013. Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response. Clin Cancer Res. 19(24):6741–6750.
  • Zhang H, Wong CC, Wei H, Gilkes DM, Korangath P, Chaturvedi P, Schito L, Chen J, Krishnamachary B, Winnard PT, Jr, et al. 2012. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene. 31(14):1757–1770.
  • Zhang Q, Cascio E, Li C, Yang Q, Gerweck LE, Huang P, Gottschalk B, Flanz J, Schuemann J. 2020. FLASH Investigations Using Protons: Design of Delivery System, Preclinical Setup and Confirmation of FLASH Effect with Protons in Animal Systems. Radiat Res. 194(6):656–664.
  • Zhou S, Zheng D, Fan Q, Yan Y, Wang S, Lei Y, Besemer A, Zhou C, Enke C. 2020. Minimum dose rate estimation for pulsed FLASH radiotherapy: A dimensional analysis. Med Phys. 47(7):3243–3249.
  • Zhu M, Yang M, Zhang J, Yin Y, Fan X, Zhang Y, Qin S, Zhang H, Yu F. 2021. Immunogenic Cell Death Induction by Ionizing Radiation. Front Immunol. 12:705361.
  • Zlobinskaya O, Siebenwirth C, Greubel C, Hable V, Hertenberger R, Humble N, Reinhardt S, Michalski D, Roper B, Multhoff G, et al. 2014. The effects of ultra-high dose rate proton irradiation on growth delay in the treatment of human tumor xenografts in nude mice. Radiat Res. 181(2):177–183.