1,937
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

mRNA and small RNA gene expression changes in peripheral blood to detect internal Ra-223 exposure

, , , , ORCID Icon, , , , , , & show all
Pages 900-912 | Received 27 Jul 2021, Accepted 19 Oct 2021, Published online: 09 Dec 2021

References

  • Andrés-León E, Cases I, Alonso S, Rojas AM. 2017. Novel miRNA-mRNA interactions conserved in essential cancer pathways. Sci Rep. 7:46101.
  • Birchall A, Puncher M, Marsh JW, Davis K, Bailey MR, Jarvis NS, Peach AD, Dorrian MD, James AC. 2007. IMBA Professional Plus: a flexible approach to internal dosimetry. Radiat Prot Dosimetry. 125(1–4):194–197.
  • Blake GM, Park-Holohan SJ, Cook GJR, Fogelman I. 2001. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 31(1):28–49.
  • Boldt S, Knops K, Kriehuber R, Wolkenhauer O. 2012. A frequency-based gene selection method to identify robust biomarkers for radiation dose prediction. Int J Radiat Biol. 88(3):267–276.
  • Carrasquillo JA, O'Donoghue JA, Pandit-Taskar N, Humm JL, Rathkopf DE, Slovin SF, Williamson MJ, Lacuna K, Aksnes A-K, Larson SM, et al. 2013. Phase i pharmacokinetic and biodistribution study with escalating doses of 223Ra-dichloride in men with castration-resistant metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 40(9):1384–1393.
  • Chaudhry MA. 2008. Biomarkers for human radiation exposure. J Biomed Sci. 15(5):557–563.
  • Chittenden SJ, Hindorf C, Parker CC, Lewington VJ, Pratt BE, Johnson B, Flux GD. 2015. A phase 1, open-label study of the biodistribution, pharmacokinetics, and dosimetry of 223Ra-dichloride in patients with hormone-refractory prostate cancer and skeletal metastases. J Nucl Med. 56(9):1304–1309.
  • Confer D, Chao N, Case C. 2018. Are we prepared for nuclear terrorism? N Engl J Med. 378(25):2447–2450.
  • Eichholz GG. 2005. The radiological accident in Cochabamba. Vienna: International Atomic Energy Agency.
  • Ghandhi SA, Sima C, Weber WM, Melo DR, Rudqvist N, Morton SR, Turner HC, Amundson SA. 2020. Dose and dose-rate effects in a mouse model of internal exposure to 137Cs. part 1: global transcriptomic responses in blood. Radiat Res. 2020:41.
  • Ghandhi SA, Weber W, Melo D, Doyle-Eisele M, Chowdhury M, Guilmette R, Amundson SA. 2015. Effect of 90Sr internal emitter on gene expression in mouse blood. BMC Genomics. 16(1):74.
  • Giussani A, Lopez MA, Romm H, Testa A, Ainsbury EA, Degteva M, Della Monaca S, Etherington G, Fattibene P, Güclu I, et al. 2020. Eurados review of retrospective dosimetry techniques for internal exposures to ionising radiation and their applications. Radiat Environ Biophys. 59(3):357–387.
  • Guo H, Ingolia NT, Weissman JS, Bartel DP. 2010. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 466(7308):835–840.
  • Hall EJ, Giaccia AJ. 2012. Radiobiology for the radiologist: Seventh edition. Alphen aan den Rijn, Netherlands: Wolters Kluwer.
  • Harrison J, Fell T, Leggett R, Lloyd D, Puncher M, Youngman M. 2017. The polonium-210 poisoning of Mr Alexander Litvinenko. J Radiol Prot. 37(1):266–278.
  • Harrison J, Phipps A, Stather J. 2004. Guest editorial: last report in series on public doses. Ann ICRP. 34(3–4):1–27.
  • Hindorf C, Chittenden S, Aksnes AK, Parker C, Flux GD. 2012. Quantitative imaging of 223Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases. Nucl Med Commun. 33(7):726–732.
  • IAEA. 2004. Strengthening control over radioactive sources in authorized use and regaining control over orphan sources, IAEA-TECDOC-1388 [Internet]. (February):108; [accessed 2021 Oct 29]. http://www-pub.iaea.org/MTCD/publications/PDF/te_1388_web.pdf.
  • Information FP. 2013. XOFIGO (radium Ra 223 dichloride) – prescription – Bayerhealthcare.com.: 1–14.
  • International Atomic Energy Agency. 2005. Categorization of radioactive sources. IAEA Saf Stand Ser [Internet]. No. RS-G-1(July):70; [accessed 2021 Oct 29]. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1227_web.pdf.
  • Jacobs AR, Guyon T, Headley V, Nair M, Ricketts W, Gray G, Wong JYC, Chao N, Terbrueggen R. 2020. Role of a high throughput biodosimetry test in treatment prioritization after a nuclear incident. Int J Radiat Biol. 96(1):57–66.
  • Jefferson RD, Goans RE, Blain PG, Thomas SHL. 2009. Diagnosis and treatment of polonium poisoning Polonium poisoning. Clin Toxicol. 47(5):379–392.
  • Kabacik S, MacKay A, Tamber N, Manning G, Finnon P, Paillier F, Ashworth A, Bouffler S, Badie C. 2011. Gene expression following ionising radiation: identification of biomarkers for dose estimation and prediction of individual response. Int J Radiat Biol. 87(2):115–129.
  • Karlsruhe K. 1979. Meßtechniken bei der Inkorporationsüberwachung auf Tritium und Kohlenstoff-14. (November).
  • Lassmann M, Eberlein U. 2018. Targeted alpha-particle therapy: imaging, dosimetry, and radiation protection. Ann ICRP. 47(3–4):187–195.
  • Lassmann M, Nosske D. 2013. Dosimetry of 223Ra-chloride: dose to normal organs and tissues. Eur J Nucl Med Mol Imaging. 40(2):207–212.
  • Manning G, Kabacik S, Finnon P, Bouffler S, Badie C. 2013. High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int J Radiat Biol. 89(7):512–522.
  • Meadows SK, Dressman HK, Daher P, Himburg H, Russell JL, Doan P, Chao NJ, Lucas J, Nevins JR, Chute JP. 2010. Diagnosis of partial body radiation exposure in mice using peripheral blood gene expression profiles. PLoS One. 5(7):e11535.
  • Meadows SK, Dressman HK, Muramoto GG, Himburg H, Salter A, Wei ZZ, Ginsburg G, Chao NJ, Nevins JR, Chute JP. 2008. Gene expression signatures of radiation response are specific, durable and accurate in mice and humans. PLoS One. 3(5):12.
  • Miederer M, Thomas C, Beck J, Hampel C, Krieger C, Baqué PE, Helisch A, Schreckenberger M. 2015. Hämatopoetische toxizität von radium-223 bei patienten mit hoher ossärer tumorlast. NuklearMedizin. 54(5):197–203.
  • Miller KL. 2012. NCRP Report No. 166, population monitoring and radionuclide decorporation following a radiological or nuclear incident. Health Phys. 102(1):100.
  • O’Brien G, Cruz-Garcia L, Majewski M, Grepl J, Abend M, Port M, Tichý A, Sirak I, Malkova A, Donovan E, et al. 2018. FDXR is a biomarker of radiation exposure in vivo. Sci Rep. 8(1):43.
  • Ostheim P, Haupt J, Schüle S, Herodin F, Valente M, Drouet M, Majewski M, Port M, Abend M. 2020. Differentiating total- or partial-body irradiation in baboons using mRNA expression patterns: a proof of concept. Radiat Res. 194(5):476–484.
  • Paul S, Amundson SA. 2008. Development of gene expression signatures for practical radiation biodosimetry. Int J Radiat Oncol Biol Phys. 71(4):1236–1244.
  • Paul S, Barker CA, Turner HC, McLane A, Wolden SL, Amundson SA. 2011. Prediction of in vivo radiation dose status in radiotherapy patients using ex vivo and in vivo gene expression signatures. Radiat Res. 175(3):257–265.
  • Port M, Herodin F, Valente M, Drouet M, Lamkowski A, Majewski M, Abend M. 2016. First generation gene expression signature for early prediction of late occurring hematological acute radiation syndrome in baboons. Radiat Res. 186(1):39–54.
  • Port M, Hérodin F, Valente M, Drouet M, Lamkowski A, Majewski M, Abend M. 2017. Gene expression signature for early prediction of late occurring pancytopenia in irradiated baboons. Ann Hematol. 96(5):859–870.
  • Port M, Herodin F, Valente M, Drouet M, Ullmann R, Doucha-Senf S, Lamkowski A, Majewski M, Abend M. 2016. MicroRNA expression for early prediction of late occurring hematologic acute radiation syndrome in baboons. PLoS One. 11(11):e0165307.
  • Port M, Hérodin F, Valente M, Drouet M, Ullmann R, Majewski M, Abend M. 2017. Pre-exposure gene expression in baboons with and without pancytopenia after radiation exposure. Int J Mol Sci. 18(3):541.
  • Port M, Majewski M, Herodin F, Valente M, Drouet M, Forcheron F, Tichy A, Sirak I, Zavrelova A, Malkova A, et al. 2018. Validating baboon ex vivo and in vivo radiation-related gene expression with corresponding human data. Radiat Res. 189(4):389–398.
  • Port M, Ostheim P, Majewski M, Voss T, Haupt J, Lamkowski A, Abend M. 2019. Rapid high-throughput diagnostic triage after a mass radiation exposure event using early gene expression changes. Radiat Res. 192(2):208–218.
  • Rosoff H, Von Winterfeldt D. 2007. A risk and economic analysis of dirty bomb attacks on the ports of Los Angeles and Long Beach. Risk Anal. 27(3):533–546.
  • Rothkamm K, Beinke C, Romm H, Badie C, Balagurunathan Y, Barnard S, Bernard N, Boulay-Greene H, Brengues M, De Amicis A, et al. 2013. Comparison of established and emerging biodosimetry assays. Radiat Res. 180(2):111–119.
  • Rump A, Becker B, Eder S, Lamkowski A, Abend M, Port M. 2018. Medical management of victims contaminated with radionuclides after a “dirty bomb” attack. Mil Med Res. 5(1):27.
  • Rump A, Stricklin D, Lamkowski A, Eder S, Abend M, Port M. 2016. The Impact of Time on Decorporation Efficacy after a “dirty Bomb” Attack Studied by Simulation. Drug Res. 66(11):607–613.
  • Rump A, Stricklin D, Lamkowski A, Eder S, Abend M, Port M. 2017. The incorporation of radionuclides after wounding by a “Dirty Bomb”: the impact of time for decorporation efficacy and a model for cases of disseminated fragmentation wounds. Adv Wound Care. 6(1):1–9.
  • Shuryak I, Ghandhi SA, Turner HC, Weber W, Melo D, Amundson SA, Brenner DJ. 2020. Dose and dose-rate effects in a mouse model of internal exposure from 137Cs. Part 2: integration of Gamma-H2AX and gene expression biomarkers for retrospective radiation biodosimetry. Radiat Res. 2020:42.1.
  • Taylor GA, Carolina S. 2000. The evolution of internal dosimetry bioassay methods at the savannah river site in-vitro bioassay. Environ Sci. (800):253–264.
  • De Vincentis G, Gerritsen W, Gschwend JE, Hacker M, Lewington V, O’Sullivan JM, Oya M, Pacilio M, Parker C, Shore N, et al. 2019. Advances in targeted alpha therapy for prostate cancer. Ann Oncol. 30(11):1728–1739.