131
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Induced variability and assessment of mutagenic effectiveness and efficiency in sorghum genotypes [Sorghum bicolor (L.) Moench]

, , , &
Pages 230-243 | Received 15 Apr 2021, Accepted 26 Oct 2021, Published online: 02 Dec 2021

References

  • Akinseye FM, Ajeigbe HA, Pierre CST, Agelee SO, Zemadim B, Whitbread A. 2020. Improving sorghum productivity under changing climatic conditions: a modelling approach. Field Crops Res. 246:1–11.
  • Baghalian K, Shabani M, Jamshidi AH. 2010. Genetic variation and heritability of agro-morphological and phytochemical traits in Iranian saffron (Crocus sativa L.) populations. Ind Crops Prod. 31(2):401–410.
  • Bello D, Kadams AM, Simon SY, Mashi DS. 2007. Studies on genetic variability in cultivated sorghum (Sorghum bicolor L. Moench) cultivars of Adamawa State Nigeria. Am Eur J Agric Environ Sci. 2 (3):297–302.
  • Bhala VP, Verma RC. 2018. Gamma rays induced chromosomal aberrations in tomato (Solanum lycopersicum L.). Chrom Bot. 12(4):86–90.
  • Blonstein AD, Gale MD. 1984. Cell size and cell number in dwarf barley and semidwarf cereal mutants and their use in cross breeding II (Teidse 407). FAO/IAEA; Vienna; p. 19–29.
  • Dhole VJ. 1999. Studies on effect of mutagens in soybean (Glycine max (L) Merrill) [M.Sc. thesis]. Akola; p. 82.
  • FAO/IAEA. 2018. Types of mutations. In: Spencer-Lopes MM, Forster BP, Jankuloski L, editors. Manual on mutation breeding – third edition. Rome, Italy: Food and Agriculture Organization of the United Nations, Associates Universities; p. 301.
  • Golubinova IG, Gecheff K. 2011. M1 cytogenetic and physiological effects of gamma-rays in Sudan grass (Sorghum sudanense (Piper.) Stapf). Bulgarian J Agric Sci. 17:417–423.
  • Goud JV, Nayar KMD, Rao MG. 1970. Mutagenesis in sorghum. Indian J Genet Pl. Breed. 30(1):81–90.
  • Goyal S, Wani MR, Khan S. 2019. Frequency and spectrum of chlorophyll mutations induced by single and combination treatments of gamma rays and EMS in Urdbean. Asian J Biol Sci. 12(2):156–163.
  • Gregory WC. 1956. Induction of useful mutations in the peanut. In: Smith HH, editor. Genetics in plant breeding. Brookhaven symposia in biology no. 9. Upton (NY): Brookhaven National Laboratory, Associates Universities; p. 177–190.
  • Gustafsson A. 1940. The mutation systems of chlorophyll apparatus. Lands Univ Arsska N R Acad. 236:1–40.
  • Harris HB, Burton GW, Johnson BJ. 1965. Effects of gamma radiation on two varieties of Sorghum vulgare Pers.; p. 362–365.
  • Human S, Sihono, Indriatama WM. 2020. Sorghum improvement program by using mutation breeding in Indonesia. IOP Conf Ser Earth Environ Sci. 484:1–8. doi:https://doi.org/10.1088/1755-1315/484/1/012003.
  • [ICAR-IIMR] ICAR-Indian Institute of Millets Research. 2019. Annual report 2019. Rajendranagar, Hyderabad, India; p. 112.
  • Kaul MH, Bhan AK. 1977. Mutagenic effectiveness and efficiency of EMS, DES and gamma-rays in rice. Theor Appl Genet. 50(5):241–246.
  • Kebede H, Subudhi PK, Rosenow DT, Nguyen HT. 2001. Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet. 103(2–3):266–276.
  • Khan MH, Tyagi SD. 2010. Studies on effectiveness and efficiency of gamma rays, EMS and their combination in soybean [Glycine max (L.) Merrill.]. J Plant Breed Crop Sci. 2(3):55–58.
  • Khan S, Wani MR, Bhat M, Parveen K. 2005. Induced chlorophyll mutations in chickpea (Cicer arietinum L.). Int J Agric Biol. 7:764–767.
  • Kodym A, Afza R. 2003. Physical and chemical mutagenesis. Methods Mol Biol. 236:189–204.
  • Konzak CF, Nilan RA, Wagner J, Foster RJ. 1964. Efficient chemical mutagenesis. In: The use of induced mutations in plant breeding. Proceedings of a Symposium, FAO/IAEA; Vienna.
  • Kumawat S, Rana N, Bansal R, Vishwakarma G, Mehetre ST, Das BK, Kumar M, Yadav SK, Sonah H, Sharma TR, et al. 2019. Expanding avenue of fast neutron mediated mutagenesis for crop Improvement. Plants. 8(6):164.
  • Makeen K, Suresh BG, Lavanya GR, Kumari A. 2013. Study of chlorophyll and macro mutations induced by gamma rays and sodium azide in Urdbean (Vigna mungo L. Hepper). Afr J Agric Res. 8(47):5958–5961.
  • Moh CC, Smith L. 1951. An analysis of seedling mutants (spontaneous, atomic bomb-radiation-, and X ray-induced) in barley and durum wheat. Genet. 36(6):629–640.
  • Moradi M, Dehpour AA, Bishekolai R. 2009. Effect of gamma radiation on germination and embryogenic callus in rice (Oryza sativa). Proceedings of 10th International Agricultural-Engineering Conference; Dec 7–10; Thailand. IAEC. p. 232.
  • Nair R, Mehta AK, Singh KP, Sharma SK. 2014. Mutagenic effectiveness and efficiency in cowpea. Adv Appl Res. 6(1):78–85.
  • Nirula S. 1963. Studies on some nuclear factors controlling radiation sensitivity and the induced mutation rate in Eu and Para sorghum species. Radiat Bot. 3(4):351–361.
  • Oria MP, Hamaker BR, Axtell JD, Huang CP. 2000. A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. Proc Natl Acad Sci USA. 97(10):5065–5070.
  • Panse VG, Sukhatme PV. 1954. Statistical methods for agricultural workers. New Delhi: ICAR; p. 152–165.
  • Paul A, Singh DP. 2005. Frequency, spectrum and segregation pattern of chlorophyll and macromutations in field pea (Pisum sativum). Legume Res. 28(2):94–98.
  • Pavadai P, Girija M, Dhanavel D. 2010. Effect of gamma rays on some yield parameters and protein content of soybean in M2, M3 and M4 generation. J Exp Sci. 1(6):8–11.
  • Prabhakar . 2002. Stability analysis for flowering, maturity and grain yield in rabi sorghum. Ann Agric Res. 23(4):563–566.
  • Raina A, Laskar RA, Khursheed S, Amin R, Tantray AY, Parveen K, Khan S. 2016. Role of mutation breeding in crop improvement—past, present and future. Asian Res J Agric. 2(2):1–13.
  • Ramesh B, Prasad BK, Singh VP. 2001. Semi dwarf, high yielding and high protein mutants in barley. Mut Breed Newslett. 45:26–27.
  • Ramulu SK. 1971. Chemical mutagenesis in sorghum. Proc Indian Acad Sci. 74:161–173.
  • Ramulu SK. 1972. A comparison of mutagenic effectiveness and efficiency of NMU and MNG in sorghum. Theor Appl Genet. 42(3):101–106.
  • Ramulu SK. 1973. Mutagenic effect of gamma rays, chemical mutagens and combined treatments in sorghum. Z Pflanzenzuchig. 70:223–229.
  • Reddy CS, Rao NGP. 1981. Induced mutations in sorghum improvement. Proc Indian Natl Sci Acad. B47(3):427–446.
  • Reddy CS. 1977. Physiological and genetic effects of gamma rays, ethyl methane sulphonate, hydrazine, cysteine and their combinations in Sorghum bicolor (L.) [PhD dissertation]. College Station (TX): Texas A&M University; p. 186.
  • Reddy CS, Smith JD. 1975. Differential sensitivity of two varieties of Sorghum bicolor (L.) to gamma radiation. Genet. 80:67.
  • Riley EF. 1954. The effect of X-rays upon growth of Avena seedlings. Radiat Res. 1:227–228.
  • Roberts JJ, Warwick GP. 1958. Studies of the mode of action of tumour growth inhibiting alkylating agents. I. The fate of ethyl methane sulphonate in the rat. Biochem Pharmacol. 1(1):60–75.
  • Salih A, Sabiel I, Noureldin I, Baloch SK, Baloch SU, Bashir W. 2016. Genetic variability and estimates of heritability in sorghum (Sorghum bicolor L.) genotypes grown in a semiarid zone of Sudan. Arch Agron Soil Sci. 62(1):139–145.
  • SAS Institute Inc. 2004. SAS/STAT 9.2 user’s guide. Cary (NC): SAS Institute Inc.
  • Seetharam K, Ganesamurthy K. 2013. Characterization of sorghum genotypes for yield and other agronomic traits through genetic variability and diversity analysis. Electron J Plant Breed. 4(1):1073–1079.
  • Shah AB, Ud-Deen S, Naz MM, Sarker A, Kabir JK. 2008. Post-irradiation ageing effect on morphological characters of Crotalaria saltiana. J Biol Sci. 16:89–93.
  • Singh S, Richharia AK, Joshi AK. 1998. An assessment of gamma ray induced mutations in rice (Oryza sativa L.). Indian J Genet Plant Breed. 58:455–463.
  • Smith HH. 1972. Comparative genetic effects of different physical mutagens in higher plants. In: Joint FAO/IAEA. Division of Atomic Energy in Food and Agriculture. Induced Mutations and Plant Breeding Improvement. Vienna: IAEA; p. 75–93.
  • Snedecor GW, Cochran WG. 1994. Statistical methods. 8h ed. Ames (IA): Iowa State University Press.
  • Soeranto H, Nakanishi TM, Razzak MT. 2001. Mutation breeding in sorghum in Indonesia. Radioisotopes. 50(5):169–175.
  • Suprasanna P, Mirjankar SJ, Bhagwat SG. 2015. Induced mutations and crop improvement. In: Bahadur B, editor. Plant biology and biotechnology: volume I: plant diversity, organization, function and improvement.
  • Suthakar V, Mullainathan L, Elangovan M. 2015. Studies mutagenic effect of gamma rays and EMS on sorghum. Int J Adv Res. 2(9):453–455.
  • Suthakar V, Mullainathan L, Elangovan M. 2014. Mutagenic effect of gamma rays and EMS on yield attributes of sorghum (Sorghum bicolor (L.) Moench) in M1 generation. Int J Adv Res. 2:453–455.
  • Swaminathan MS. 1969. Role of mutation breeding in changing agriculture. In: Induced mutations in plants. Jointly organized by IAEA and FAO. Proceedings of Symposium; Jul 14–18; Pullman, Washington; p. 719–733.
  • Tesso T, Tirfessa A, Mohammed H. 2011. Association between morphological traits and yield components in the durra sorghums of Ethiopia. Hereditas. 148(3):98–109.
  • Thapa CB. 1970. Effect of acute exposure of gamma rays on seed germination and seedling growth of Pinus kesiya Gord and P. wallichiana A.B. Jacks. Our Nat. 2(1):13–17.
  • Usharani KS, Kumar A. 2015. Induced viable mutants in Urdbean (Vigna mungo (L.) Hepper). Bioscan. 10(3):1103–1108.
  • Veenakumari K. 1994. Studies on the effect of gamma rays and EMS on yield and yield components in soybean (Glycine max (L.) Merrill) [MSc.(Agri) thesis]. Bangalore, India: University of Agricultural Sciences.
  • Wanga MA, Ashok Kumar A, Kangueehi GN, Shimelis H, Horn H, Sarsu F, Andowa JFN. 2018. Breeding sorghum using induced mutations: future prospect for Namibia. Am J Plant Sci. 9(13):2696–2707.
  • Wani MR. 2017. Induced chlorophyll mutations, comparative mutagenic effectiveness and efficiency of chemical mutagens in lentils (Lens culinaris Medik). Asian J Plant Sci. 16(4):221–226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.