155
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of the genetic structure of Bromus inermis populations from chemically and radioactively polluted areas using microsatellite markers from closely related species

ORCID Icon & ORCID Icon
Pages 1289-1300 | Received 16 May 2021, Accepted 19 Nov 2021, Published online: 31 Jan 2022

References

  • Almeida-Rocha JM, Soares LASS, Andrade ER, Gaiotto FA, Cazetta E. 2020. The impact of anthropogenic disturbances on the genetic diversity of terrestrial species: a global meta-analysis. Mol Ecol. 29(24):4812–4822.
  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME. 1993. Optimizing parental selection for genetic linkage maps. Genome. 36(1):181–186.
  • Andersson P, Garnier-Laplace J, Beresford NA, Copplestone D, Howard BJ, Howe P, Oughton D, Whitehouse P. 2009. Protection of the environment from ionising radiation in a regulatory context (protect): proposed numerical benchmark values. J Environ Radioact. 100(12):1100–1108.
  • Antonova EV, Fuchs J, Röder MS. 2020. Influence of chronic man-made pollution on Bromus inermis genome size. Russ J Ecol. 51(4):337–344.
  • Antonova EV, Korchagina OS. 2017. Microsatellite loci variability in the Ural population of Silene latifolia (Caryophyllaceae). Biol Bull Russ Acad Sci. 44(5):486–492.
  • Antonova EV, Pozolotina VN, Karimullina EM. 2014. Variation in the seed progeny of smooth brome grass, Bromus inermis Leyss., under conditions of chronic irradiation in the zone of the Eastern Ural Radioactive Trace. Russ J Ecol. 45(6):508–516.
  • Antonova EV, Pozolotina VN, Karimullina EM. 2015. Time-dependent changes of the physiological status of Bromus inermis Leyss. seeds from chronic low level radiation exposure areas. Biol Rhythm Res. 46(4):587–600.
  • Antonova EV, Shoeva OY, Khlestkina EK. 2019. Biochemical and genetic polymorphism of Bromopsis inermis populations under chronic radiation exposure. Planta. 249(6):1977–1985.
  • Babbel GR, Selander RK. 1974. Genetic variability in edaphically restricted and widespread plant species. Evolution. 28(4):619–630.
  • Bánki O, Roskov Y, Vandepitte L, DeWalt RE, Remsen D, Schalk P, Orrell T, Keping M, Miller J, Aalbu R, et al. 2021. Bromus inermis Leyss. Catalogue of life checklist. Version 2021-08-25. Copenhagen (Denmark): Global Biodiversity Information Facility (GBIF).
  • Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits C, Brunel D, Goldringer I. 2008. FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor Appl Genet. 116(3):383–394.
  • Brookfield JFY. 1996. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol. 5(3):453–455.
  • Cheng X, Wang Y, Pang Y, Chen X, Wu J, Zhao J. 2014. Primer transferability analysis on SSR and EST-SSR markers from Triticum aestivum to Bromus inermis. Plant Sci J. 32:27–33.
  • Cong W, Miao Y, Xu L, Zhang Y, Yuan C, Wang J, Zhuang T, Lin X, Jiang L, Wang N, et al. 2019. Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.). BMC Plant Biol. 19(1):282.
  • Diaby M, Casler MD. 2003. RAPD marker variation among smooth bromegrass cultivars. Crop Sci. 43(4):1538–1547.
  • Doyle J. 1991. DNA protocols for plants. In: Hewitt GM, Johnston AWB, Young JPW, editors. Molecular techniques in taxonomy. Berlin(Germany): Springer.
  • Earl DA, von Holdt BM. 2012. STRUCTURE Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour. 4(2):359–361.
  • Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol. 14(8):2611–2620.
  • Falush D, Stephens M, Pritchard JK. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 164(4):1567–1587.
  • Geras’kin SA, Volkova PY. 2014. Genetic diversity in Scots pine populations along a radiation exposure gradient. Sci Total Environ. 496:317–327.
  • Gombeau K, Bonzom J-M, Cavalié I, Camilleri V, Orjollet D, Dubourg N, Beaugelin-Seiller K, Bourdineaud J-P, Lengagne T, Armant O, et al. 2020. Dose-dependent genomic DNA hypermethylation and mitochondrial DNA damage in Japanese tree frogs sampled in the Fukushima Daiichi area. J Environ Radioact. 225:106429.
  • Grant TA, Shaffer TL, Flanders B. 2020. Patterns of smooth brome, Kentucky bluegrass, and shrub invasion in the Northern Great Plains vary with temperature and precipitation. Natural Areas J. 40(1):11–22.
  • Green JM, Edwards KJ, Usher SL, Barker JH, Marshall EJ, Froud-Williams RJ, Karp A. 2000. Microsatellites for Barren Brome (Anisantha sterilis). Mol Ecol. 9(12):2195–2197.
  • Hedrick P. 2011. Genetics of populations. Burlington (MA): Jones & Bartlett Learning.
  • Himmelbauer ML, Vateva V, Lozanova L, Loiskandl W, Rousseva S. 2009. Root characteristics of Lotus corniculatus L. and Bromus inermis L. grown on eroded rangeland in a semi-arid area of South Bulgaria. Vienna (Austria): International Symposium “Root Research and Applications” (RootRAP).
  • Horemans N, Nauts R, Vives I Batlle J, Van Hees M, Jacobs G, Voorspoels S, Gaschak S, Nanba K, Saenen E. 2018. Genome-wide DNA methylation changes in two Brassicaceae species sampled alongside a radiation gradient in Chernobyl and Fukushima. J Environ Radioact. 192:405–416.
  • Horemans N, Spurgeon DJ, Lecomte-Pradines C, Saenen E, Bradshaw C, Oughton D, Rasnaca I, Kamstra JH, Adam-Guillermin C. 2019. Current evidence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context. Environ Pollut. 251:469–483.
  • ICRP. 2008. ICRP publication 108: environmental protection − the concept and use of reference animals and plants. Ottawa (Canada): International Commission on Radiological Protection.
  • Ishikawa M, Robertson AJ, Gusta LV. 1995. Comparison of viability tests for assessing cross-adaptation to freezing, heat and salt stresses induced by abscisic-acid in bromegrass (Bromus inermis Leyss) suspension-cultured cells. Plant Sci. 107(1):83–93.
  • Jarne P, Lagoda PJL. 1996. Microsatellites, from molecules to populations and back. Trends Ecol Evol. 11(10):424–429.
  • Karimullina E, Antonova E, Pozolotina V. 2013. Assessing radiation exposure of herbaceous plant species at the East-Ural Radioactive Trace. J Environ Radioact. 124:113–120.
  • Karimullina E, Antonova EV, Pozolotina VN. 2016. Genetic variation in natural Melandrium album populations exposed to chronic ionizing radiation. Environ Sci Pollut Res Int. 23(21):21565–21576.
  • Karimullina EM, Mikhailovskaya LN, Pozolotina VN, Antonova EV. 2018. Radionuclide uptake and dose assessment of 14 herbaceous species from the East-Ural Radioactive Trace area using the ERICA Tool. Environ Sci Pollut Res Int. 25(14):13975–13987.
  • Kellogg EA. 2008. Restriction site variation in the chloroplast genomes of the monogenomic Triticeae. Hereditas. 116:43–47.
  • Kellogg EA. 2015. Flowering plants. Monocots: Poaceae. Cham (Switzerland): Springer International.
  • Kindiger BK, Conley T. 2009. Utilizing single primers as molecular markers in Poa spp. Jap Soc Grassland Sci. 55(4):206–215.
  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. 2015. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Res. 15:1179–1191. doi: https://doi.org/10.1111/1755-0998.12387.
  • Leger EA, Espeland EK, Merrill KR, Meyer SE. 2009. Genetic variation and local adaptation at a cheatgrass (Bromus tectorum) invasion edge in western Nevada. Mol Ecol. 18(21):4366–4379.
  • Li Z, Ferdinandez YSN, Coulman B. 2006. An assessment of genetic variation and relationships of smooth bromegrass cultivars and accessions using AFLP markers. Can J Plant Sci. 86(2):453–458.
  • Luikart G, England PR. 1999. Statistical analysis of microsatellite DNA data. Trends Ecol Evol. 14(7):253–256.
  • Lysenko EA, Kal’chenko VA, Shevchenko VA. 1999. Alteration of polymorphic systems of Centaurea scabiosa L. under chronic irradiation. Radiats Biol Radioecol. 39(6):623–629.
  • Meeks HN, Chesser RK, Rodgers BE, Gaschak S, Baker RJ. 2009. Understanding the genetic consequences of environmental toxicant exposure: Chernobyl as a model system. Environ Toxicol Chem. 28(9):1982–1994.
  • Modorov MV, Pozolotina VN. 2011. Allozyme variation of the pygmy wood mouse Apodemus uralensis (Rodentia, Muridae) in the Ural region. Russ J Genet. 47(3):332–339.
  • Molchanova I, Mikhailovskaya L, Antonov K, Pozolotina V, Antonova E. 2014. Current assessment of integrated content of long-lived radionuclides in soils of the head part of the East Ural Radioactive Trace. J Environ Radioact. 138:238–248.
  • Molchanova IV, Pozolotina VN, Karavaeva EN, Mikhaylovskaya LN, Antonova EV, Antonov KL. 2009. Radioactive inventories within the East-Ural radioactive state reserve on the Southern Urals. Radioprotection. 44(5):747–757.
  • Molinier J, Ries G, Zipfel C, Hohn B. 2006. Transgeneration memory of stress in plants. Nature. 442(7106):1046–1049.
  • Monteiro M, Santos C, Mann RM, Soares AMVM, Lopes T. 2007. Evaluation of cadmium genotoxicity in Lactuca sativa L. using nuclear microsatellites. Environ Exp Bot. 60(3):421–427.
  • Nikipelov BV, Romanov GN, Buldakov LN, Babaev NS, Kholina YB, Mikerin EI. 1990. About accident on Southern Urals of 29 September 1957. Inform Bull Interdepartmental Council Info Public Relat Atom Energy. :39–48.
  • Nizam I, Gulcu R, Tuna GS, Tuna M. 2020. Determination of nuclear DNA content and ploidy of some Bromus L. germplasm by flow cytometry. PAKJBOT. 52(3):909–913.
  • Oja T. 1998. Isoenzyme diversity and phylogenetic affinities among the Eurasian annual Bromus (Bromus L., Poaceae). Tartu (Estonia): Tartu University.
  • Oja T. 2005. Isozyme evidence on the genetic diversity, mating system and evolution of Bromus intermedius (Poaceae). Plant Syst Evol. 254(3–4):199–208.
  • Omar-Nazir L, Shi X, Moller A, Mousseau T, Byun S, Hancock S, Seymour C, Mothersill C. 2018. Long-term effects of ionizing radiation after the Chernobyl accident: possible contribution of historic dose. Environ Res. 165:55–62.
  • Osipova GМ. 1982. Studies of polyploid forms of smooth brome B. inermis (Leyss). and the possibility of their selection use. Novosibirsk (Russia): Siberian Research Institute of Forage (SibRIF).
  • Ou X, Zhang Y, Xu C, Lin X, Zang Q, Zhuang T, Jiang L, von Wettstein D, Liu B. 2012. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PLoS One. 7(9):e41143.
  • Pillay M. 1993. Chloroplast genome organization of bromegrass, Bromus inermis Leyss. Theor Appl Genet. 86(2–3):281–287.
  • Pozolotina VN, Antonova EV, Bezel VS. 2012. Comparison of remote consequences in Taraxacum officinale seed progeny collected in radioactively or chemically contaminated areas. Ecotoxicology. 21(7):1979–1988.
  • Pozolotina VN, Antonova EV, Karimullina EM. 2010. Assessment of radiation impact on Stellaria graminea cenopopulations in the zone of the Eastern Ural Radioactive Trace. Russ J Ecol. 41(6):459–468.
  • Pozolotina VN, Antonova EV, Shimalina NS. 2016. Adaptation of greater plantain, Plantago major L., to long-term radiation and chemical exposure. Russ J Ecol. 47(1):1–10.
  • Pozolotina VN, Molchanova IV, Mikhaylovskaya LN, Antonova EV, Karavaeva EN. 2012. The current state of terrestrial ecosystems in the eastern ural radioactive trace. In: Gerada JG, editor. Radionuclides: sources, properties and hazards. New York (NY): Nova Science.
  • Prentice HC, Lonn M, Lefkovitch LP, Runyeon H. 1995. Associations between allele frequencies in Festuca ovina and habitat variation in the alvar grasslands on the Baltic island of Oland. J Ecol. 83(3):391–402.
  • Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics. 155(2):945–959.
  • Pshenichnikova TA, Khlestkina EK, Landjeva S, Doroshkov AV, Kartseva T, Börner A, Simonov AV, Shchukina LV, Morozova EV. 2015. Genetic dissection of earliness by analysis of a recombinant chromosome substitution double haploid mapping population of bread wheat (Triticum aestivum L.) in different geographic regions. Euphytica. 206(1):191–202.
  • Puecher DI, Robredo CG, Rios RD, Rimieri P. 2001. Genetic variability measures among Bromus catharticus Vahl. populations and cultivars with RAPD and AFLP markers. Euphytica. 121(3):229–236.
  • Ramakrishnan AP. 2003. Microsatellite markers for Bromus tectorum (cheatgrass). Provo (UT): Brigham Young University.
  • Ramakrishnan AP, Coleman CE, Meyer SE, Fairbanks DJ. 2002. Microsatellite markers for Bromus tectorum (cheatgrass). Mol Ecol Notes. 2(1):22–23.
  • Ramakrishnan AP, Meyer SE, Fairbanks DJ, Coleman CE. 2006. Ecological significance of microsatellite variation in western North American populations of Bromus tectorum. Plant Species Biol. 21(2):61–73.
  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW. 1998. A microsatellite map of wheat. Genetics. 149(4):2007–2023. doi: no.
  • Rybak AV, Belykh ES, Maystrenko TA, Shadrin DM, Pylina YI, Chadin IF, Velegzhaninov IO. 2020. Genetic analysis in earthworm population from area contaminated with radionuclides and heavy metals. Sci Total Environ. 723:137920.
  • Rybak AV, Belykh ES, Maystrenko TA, Velegzhaninov IO. 2018. Microsatellite polymorphism of Trifolium pratense population at the conditions of radioactive and chemical contamination of soil (Komi republic, Russia). Environ Sci Pollut Res Int. 25(34):34701–34710.
  • Saeidnia F, Majidi MM, Spanani S, Abdollahi Bakhtiari M, Karami Z, Hughes N. 2020. Genotypic-specific responses caused by prolonged drought stress in smooth bromegrass (Bromus inermis): interactions with mating systems. Plant Breed. 139(5):1029–1041.
  • Shimalina NS, Antonova EV, Pozolotina VN. 2020. Genetic polymorphism of Plantago major populations from the radioactive and chemical polluted areas. Environ Pollut. 257:113607.
  • Smouse PE, Banks SC, Peakall R. 2017. Converting quadratic entropy to diversity: both animals and alleles are diverse, but some are more diverse than others. PLoS One. 12(10):e0185499.
  • StatSoft, Inc. 2011. STATISTICA (data analysis software system). Version 10: new features and enhancements edn. Tulsa (OK): StatSoft, Inc.
  • Sutkowska A, Mitka J. 2008. RAPD analysis points to old world Bromus species as ancestral to new world subgen Festucaria. Acta Biol Cracov Bot. 50:117–125.
  • Takezaki N, Nei M, Tamura K. 2010. POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with windows interface. Mol Biol Evol. 27(4):747–752.
  • Theodorakis CW, Shugart LR. 1997. Genetic ecotoxicology II: population genetic structure in mosquitofish exposed in situ to radionuclides. Ecotoxicology. 6(6):335–354.
  • Tuna M, Vogel KP, Arumuganathan K, Gill KS. 2001. DNA content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Sci. 41(5):1629–1634.
  • Tuna M, Vogel KP, Gill KS, Arumuganathan K. 2004. C-banding analyses of Bromus inermis genomes. Crop Sci. 44(1):31–37.
  • Ulyanova EV, Pozolotina VN. 2006. Clonal diversity and rare phenes in Taraxacum officinale s.l. coenopopulations from the East-Ural radioactive trace zone. Dokl Biol Sci. 406:106–108.
  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 4(3):535–538.
  • Van Rossum F, Bonnin I, Fenart S, Pauwels M, Petit D, Saumitou-Laprade P. 2004. Spatial genetic structure within a metallicolous population of Arabidopsis halleri, a clonal, self-incompatible and heavy-metal-tolerant species. Mol Ecol. 13(10):2959–2967.
  • van Straalen NM, Timmermans MJTN. 2002. Genetic variation in toxicant-stressed populations: an evaluation of the “genetic erosion” hypothesis. Hum Ecol Risk Assess. 8(5):983–1002.
  • Volkova PY, Duarte GT, Kazakova EA, Makarenko ES, Bitarishvili SV, Bondarenko VS, Perevolotskii AN, Geras’kin SA, Garbaruk DK, Turchin LM. 2021. Radiosensitivity of herbaceous plants to chronic radiation exposure: field study in the Chernobyl exclusion zone. Sci Tot Envir. 777:146206.
  • Willerding C, Poschlod P. 2002. Does seed dispersal by sheep affect the population genetic structure of the calcareous grassland species Bromus erectus? Biol Conserv. 104(3):329–337.
  • Williams WM, Stewart AV, Williamson ML. 2011. Bromus. In: Wild Crop Relatives: Genomic and Breeding Resources; p. 15–30. doi: https://doi.org/10.1007/978-3-642-14255-0.
  • Yu T, Han B, Tian Q, Liu A. 2011. Genetic variation and clonal diversity of Bromus ircutensis Kom. in the Otingdag sandy land detected by ISSR markers. Russ J Genet. 47(6):703–710.
  • Zhang F-X, Wang T-J, Wang Z-L, Du J-C, Tian Q-S, Wu X-H. 2011. Genetic diversity analysis of 12 Bromus inermis Leyss populations based on RAPD markers. Chin J Grassland. 33:25–30.
  • Zhivotovsky LА. 1991. Population biometry. Мoscow (Russia): Nauka.
  • Zhuikova TV. 2009. Response of populations and herbaceous plant communities to chemical polluted area. Ekaterinburg (Russia): Institute of Plant and Animal Ecology UB RAS.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.