226
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

UV emitting nanoparticles enhance the effect of ionizing radiation in 3D lung cancer spheroids

ORCID Icon, , , &
Pages 1484-1494 | Received 24 Aug 2021, Accepted 27 Dec 2021, Published online: 28 Jan 2022

References

  • American Cancer Society (US). [ACS]. 2014. Atlanta (Georgia): The Science Behind Radiation Therapy.
  • Ash C, Dubec M, Donne K, Bashford T. 2017. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci. 32(8):1909–1918.
  • Banerjee S, Pillai MRA, Knapp FF. 2015. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev. 115(8):2934–2974.
  • Barker HE, Paget JTE, Khan AA, Harrington KJ. 2015. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 15(7):409–425.
  • Barua S, Mitragotri S. 2014. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today. 9(2):223–243.
  • Bielecka ZF, Maliszewska-Olejniczak K, Safir IJ, Szczylik C, Czarnecka AM. 2017. Three-dimensional cell culture model utilization in cancer stem cell research. Biol Rev Camb Philos Soc. 92(3):1505–1520.
  • Boateng F, Ngwa W. 2020. Delivery of nanoparticle-based radiosensitizers for radiotherapy applications. Int J Mol Sci. 21(1):273.
  • Bulin AN, Broekgaarden M, Chaput F, Baisamy V, Garrevoet J, Busser B, Brueckner D, Youssef A, Ravanat JL, Dujardin C, et al. 2020. Radiation dose‐enhancement is a potent radiotherapeutic effect of rare‐earth composite nanoscintillators in preclinical models of glioblastoma. Adv Sci. 7(20):2001675.
  • Chandra B, Subramaniam R, Mallik S, Srivastava DK. 2006. Formulation of photocleavable liposomes and the mechanism of their content release. Org Biomol Chem. 4(9):1730–1740.
  • Chao HX, Poovey CE, Privette AA, Grant GD, Chao HY, Cook JG, Purvis JE. 2017. Orchestration of DNA damage checkpoint dynamics across the human cell cycle. Cell Syst. 5(5):445–459.
  • Conrad M, Angeli JPF, Vandenabeele P, Stockwell BR. 2016. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 15(5):348–366.
  • Coohill P. 1986. Virus-cell interactions as probes for vacuum-ultraviolet radiation damage and repair. Photochem Photobiol. 44(3):359–363.
  • Cooper DR, Bekah D, Nadeau JL. 2014. Gold nanoparticles and their alternatives for radiation therapy enhancement. Front Chem. 2(86):86.
  • Dou Y, Guo Y, Li X, Li X, Wang S, Wang L, Lv G, Zhang X, Wang H, Gong X, et al. 2016. Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano. 10(2):2536–2548.
  • Espinoza S, Müller M, Jenneboer H, Peulen L, Bradley T, Purschke M, Haase M, Rahmanzadeh R, Jüstel T. 2019. Characterization of micro‐ and nanoscale LuPO 4 :Pr 3+, Nd 3+ with strong UV‐C emission to reduce X‐ray doses in radiation therapy. Part Part Syst Charact. 36(10):1900280.
  • Gogineni VR, Nalla AK, Gupta R, Dinh DH, Klopfenstein JD, Rao JS. 2011. Chk2-mediated G2/M cell cycle arrest maintains radiation resistance in malignant meningioma cells. Cancer Lett. 313(1):64–75.
  • Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. 2018. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev. 130:17–38.
  • Hall EJ, Giaccia AJ. 2012. Radiobiology for the radiologist. Philadelphia (PA): Wolters Kluwer.
  • Höckel M, Vaupel P. 2001. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 93(4):266–276.
  • Islam W, Fang J, Imamura T, Etrych T, Subr V, Ulbrich K, Maeda H. 2018. Augmentation of the enhanced permeability and retention effect with nitric oxide-generating agents improves the therapeutic effects of nanomedicines. Mol Cancer Ther. 17(12):2643–2653.
  • Jyoti K, Singh A, Fekete G, Singh T. 2020. Cytotoxic and radiosensitizing potential of silver nanoparticles against HepG-2 cells prepared by biosynthetic route using Picrasma quassioides leaf extract. J. Drug Deliv Sci Technol. 55:101479.
  • Kang B, Mackey MA, El-Sayed MA. 2010. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc. 132(5):1517–1519.
  • Kwatra D, Venugopal A, Anant S. 2013. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2:330–342.
  • Latonen L, Laiho M. 2005. Cellular UV damage responses – functions of tumor suppressor p53. Biochim Biophys Acta – Rev Cancer. 1755(2):71–89.
  • Lee SH, Meng XW, Flatten KS, Loegering DA, Kaufmann SH. 2013. Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm. Cell Death Differ. 20(1):64–76.
  • Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. 2018. Metal-based NanoEnhancers for future radiotherapy: radiosensitizing and synergistic effects on tumor cells. Theranostics. 8(7):1824–1849.
  • Macara IG. 2001. Transport into and out of the Nucleus. Microbiol Mol Biol Rev. 65(4):570–594.
  • Masoud GN, Li W. 2015. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 5(5):378–389.
  • Mi Y, Shao Z, Vang J, Kaidar-Person O, Wang AZ. 2016. Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol. 7(1):11.
  • Miranda D, Lovell JF. 2016. Mechanisms of light-induced liposome permeabilization. Bioeng Transl Med. 1(3):267–276.
  • Müller M, Espinoza S, Jüstel T, Held KD, Anderson RR, Purschke M. 2020. UVC-emitting LuPO4:Pr3+ nanoparticles decrease radiation resistance of hypoxic cancer cells. Radiat Res. 193(1):82–87. (
  • Müller M, Rahmanzadeh R, Tran T, Kappelhoff J, Akam EA, Caravan P, Jüstel T, Held KD, Anderson RR, Purschke M. 2020. Particle size of X-ray pumped UVC emitting nanoparticles defines intracellular localization and biological activity against cancer cells. Part Part Syst Charact. 37(10):2000201.
  • Müller M, Wang Y, Squillante MR, Held KD, Anderson RR, Purschke M. 2018. UV scintillating particles as radiosensitizer enhance cell killing after X-ray excitation. Radiother Oncol. 129(3):589–594.
  • Nagy JA, Chang SH, Dvorak AM, Dvorak HF. 2009. Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer. 100(6):865–869.
  • Oh N, Park JH. 2014. Endocytosis and exocytosis of nanoparticles in mammalian cells. IJN. 9:51–63.
  • Pan W, Gong S, Wang J, Yu L, Chen Y, Li N, Tang B. 2019. A nuclear-targeted titanium dioxide radiosensitizer for cell cycle regulation and enhanced radiotherapy. Chem Commun. 55(56):8182–8185.
  • Rankin EB, Giaccia AJ. 2016. Hypoxic control of metastasis. Science. 8(352):175–180.
  • Rastogi RP, Richa S, Kumar A, Tyagi MB, Sinha RP. 2010. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids. 2010:592980.
  • Rybka JD. 2019. Radiosensitizing properties of magnetic hyperthermia mediated by superparamagnetic iron oxide nanoparticles (SPIONs) on human cutaneous melanoma cell lines. Rep Pract Oncol Radiother. 24(2):152–157.
  • Satterlee AB, Yuan H, Huang L. 2015. A radio-theranostic nanoparticle with high specific drug loading for cancer therapy and imaging. J Control Release. 217:170–182.
  • Sengupta S. 2017. Cancer nanomedicine: lessons for immuno-oncology. Trends Cancer. 3(8):551–560.
  • Silva MT. 2010. Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett. 584(22):4491–4499.
  • Suzuki K, Yamauchi M, Oka Y, Suzuki M, Yamashita S. 2010. A novel and simple micro-irradiation technique for creating localized DNA double-strand breaks. Nucleic Acids Res. 38(12):e129.
  • Tchoryk A, Taresco V, Argent RH, Ashford M, Gellert PR, Stolnik S, Grabowska A, Garnett MC. 2019. Penetration and uptake of nanoparticles in 3D tumor spheroids. Bioconjug Chem. 30(5):1371–1384.
  • Unger C, Kramer N, Walzl A, Scherzer M, Hengstschläger M, Dolznig H. 2014. Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development. Adv Drug Deliv Rev. 79–80:50–67.
  • Zhao H, Zhuang Y, Li R, Liu Y, Mei Z, He Z, Zhou F, Zhou Y. 2019. Effects of different doses of X-ray irradiation on cell apoptosis, cell cycle, DNA damage repair and glycolysis in HeLa cells. Oncol Lett. 17(1):42–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.