840
Views
6
CrossRef citations to date
0
Altmetric
Review

Approaches to modeling chemical reaction pathways in radiobiology

Pages 1399-1413 | Received 16 Nov 2021, Accepted 19 Jan 2022, Published online: 10 Feb 2022

References

  • Abdelrazzak AB, Stevens DL, Bauer G, O’Neill P, Hill MA. 2011. The role of radiation quality in the stimulation of intercellular induction of apoptosis in transformed cells at very low doses. Radiat Res. 176(3):346–355.
  • Abedinzadeh Z, Gardès-Albert M, Ferradini C. 1989. Kinetic study of the oxidation mechanism of glutathione by hydrogen peroxide in neutral aqueous medium. Can J Chem. 67(7):1247–1255.
  • Adams GE, Dewey DL. 1963. Hydrated electrons and radiobiological sensitization. Biochem Biophys Res Commun. 12(6):473–477.
  • Adams GE, McNaughton GS, Michael BD. 1968. Pulse radiolysis of sulphur compounds. Part 2.—Free radical “repair” by hydrogen transfer from sulphydryl compounds. Trans Faraday Soc. 64(0):902–910.
  • Alanazi A, Meesungnoen J, Jay-Gerin JP. 2021. A computer modeling study of water radiolysis at high dose rates. Relevance to flash radiotherapy. Radiat Res. 195(2):149–162.
  • Aldrich JE, Lam KY, Shragge PC, Hunt JW. 1975. Fast electron reactions in concentrated solutions of amino acids and nucleotides. Radiat Res. 63(1):42–52.
  • Alexander P, Charlesby A. 1955. Physico-chemical methods of protection against ionizing radiations. In: Bacq ZM, Alexander P, editors. Radiobiology symposium 1954. London: Butterworths; p. 49–60.
  • Alfassi ZB, Huie RE, Kumar M, Neta P. 1992. Temperature dependence of the rate constants for oxidation of organic compounds by peroxyl radicals in aqueous alcohol solutions. J Phys Chem. 96(2):767–770.
  • Alper T, Howard-Flanders P. 1956. Role of oxygen in modifying the radiosensitivity of E. coli B. Nature. 178(4540):978–979.
  • Alves R, Antunes F, Salvador A. 2006. Tools for kinetic modeling of biochemical networks. Nat Biotechnol. 24(6):667–672.
  • Antunes F, Salvador A, Marinho HS, Alves R, Pinto RE. 1996. Lipid peroxidation in mitochondrial inner membranes. I. An integrative kinetic model. Free Radic Biol Med. 21(7):917–943.
  • Ault JG, Lawrence DA. 2003. Glutathione distribution in normal and oxidatively stressed cells. Exp Cell Res. 285(1):9–14.
  • Averbeck D, Rodriguez-Lafrasse C. 2021. Role of mitochondria in radiation responses: epigenetic, metabolic, and signaling impacts. Int J Mol Sci. 22:11047.
  • Babbs CF, Steiner MG. 1990. Simulation of free radical reactions in biology and medicine: a new two-compartment kinetic model of intracellular lipid peroxidation. Free Radic Biol Med. 8(5):471–485.
  • Barker S, Weinfeld M, Murray D. 2005. DNA-protein crosslinks: their induction, repair, and biological consequences. Mutat Res. 589(2):111–135.
  • Bauer G. 2007. Low dose radiation and intercellular induction of apoptosis: potential implications for the control of oncogenesis. Int J Radiat Biol. 83(11–12):873–888.
  • Benfeitas R, Selvaggio G, Antunes F, Coelho PM, Salvador A. 2014. Hydrogen peroxide metabolism and sensing in human erythrocytes: a validated kinetic model and reappraisal of the role of peroxiredoxin II. Free Radic Biol Med. 74:35–49.
  • Berezhkovskii AM, Szabo A. 2016. Theory of crowding effects on bimolecular reaction rates. J Phys Chem B. 120(26):5998–6002.
  • Berry RJ. 1973. Effects of radiation dose-rate from protracted, continuous irradiation to ultra-high dose-rates from pulsed accelerators. Br Med Bull. 29(1):44–47.
  • Bielski BHJ, Cabelli DE, Arudi RL, Ross AB. 1985. Reactivity of HO2•/O2•– radicals in aqueous solution. J Phys Chem Ref Data. 14(4):1041–1100.
  • Boscolo D, Scifoni E, Durante M, Krämer M, Fuss MC. 2021a. May oxygen depletion explain the flash effect? A chemical track structure analysis. Radiother Oncol. 162:68–75.
  • Boscolo D, Scifoni E, Durante M, Krämer M, Fuss MC. 2021b. Response to “comment on: may oxygen depletion explain the flash effect? A chemical track structure analysis”. Radiother Oncol. 163:237–239.
  • Bothe E, Behrens G, Bëhm E, Sethuram B, Schulte-Frohlinde D. 1986. Hydroxyl radical-induced strand break formation of poly(U) in the presence of oxygen: comparison of the rates as determined by conductivity, E.S.R. and rapid-mix experiments with a thiol. Int J Radiat Biol. 49:57–66.
  • Brambilla F, Garcia-Manteiga JM, Monteleone E, Hoelzen L, Zocchi A, Agresti A, Bianchi ME. 2020. Nucleosomes effectively shield DNA from radiation damage in living cells. Nucleic Acids Res. 48(16):8993–9006.
  • Bump, E.A., & Malaker, K. (Eds.). 1998. Radioprotectors: chemical, biological, and clinical perspectives. 1st ed. Boca Raton (FL): CRC Press.
  • Buxton GV. 1987. Radiation chemistry of the liquid state: (1) Water and homogeneous aqueous solutions. In: Farhataziz, Rodgers MAJ, editors. Radiation chemistry. Principles and applications. New York (NY): VCH Publishers; p. 321–349.
  • Buxton GV. 2003. The radiation chemistry of liquid water: principles and applications. In: Mozumder A, Hatano Y, editors. Charged particle and photon interactions with matter. Chemical, physicochemical, and biological consequences with applications. Boca Raton (FL): CRC Press; p. 331–364.
  • Buxton GV, Elliot AJ. 1993. Temperature dependence of the rate constant for the reaction H + OH in liquid water up to 200 °C. J Chem Soc Faraday Trans. 89(3):485–488.
  • Buxton GV, Greenstock CL, Helman WP, Ross AB. 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/O•–) in aqueous solution. J Phys Chem Ref Data. 17(2):513–886.
  • Cadet J, Davies KJA, Medeiros MH, Di Mascio P, Wagner JR. 2017. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med. 107:13–34.
  • Cadet J, Douki T, Ravanat JL. 2008. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc Chem Res. 41(8):1075–1083.
  • Cadet J, Douki T, Ravanat JL. 2010. Oxidatively generated base damage to cellular DNA. Free Radic Biol Med. 49(1):9–21.
  • Cadet J, Wagner JR, Angelov D. 2019. Biphotonic ionization of DNA: from model studies to cell. Photochem Photobiol. 95(1):59–72.
  • Chapman JD, Webb RG, Borsa J. 1971. Radiosensitization of mammalian cells by p-nitroacetophenone. I. Characterization in asynchronous and synchronous populations. Int J Radiat Biol Relat Stud Phys Chem Med. 19(6):561–573.
  • Colliaux A, Gervais B, Rodriguez-Lafrasse C, Beuve M. 2011. O2 and glutathione effects on water radiolysis: a simulation study. J Phys Conf Ser. 261:012007.
  • Connors KA. 1990. Chemical kinetics: the study of reaction rates in solution. New York (NY): VCH Publishers.
  • Dennis MF, Stratford MRL, Wardman P, Watfa RR. 1989. Increase in intracellular cysteine after exposure to dithiothreitol: implications in radiobiology. Int J Radiat Biol. 56(6):877–883.
  • Dennis MF, Stratford MRL, Wardman P, White J. 1991. Thiols and antioxidants in radiobiology: chemical and bioanalytical problems. In: Seymour CB, Mothersill C, editors. New developments in fundamental and applied radiobiology. London: Taylor & Francis; p. 328–333.
  • Dewey DL, Boag JW. 1959. Modification of the oxygen effect when bacteria are given large pulses of radiation. Nature. 183(4673):1450–1451.
  • Dix JA, Verkman AS. 2008. Crowding effects on diffusion in solutions and cells. Annu Rev Biophys. 37:247–263.
  • Dizdaroglu M, Jaruga P. 2012. Mechanisms of free radical-induced damage to DNA. Free Radic Res. 46(4):382–419.
  • Dmitriev RI, Zhdanov AV, Jasionek G, Papkovsky DB. 2012. Assessment of cellular oxygen gradients with a panel of phosphorescent oxygen-sensitive probes. Anal Chem. 84(6):2930–2938.
  • Douki T, Rivière J, Cadet J. 2002. DNA tandem lesions containing 8-oxo-7,8-dihydroguanine and formamido residues arise from intramolecular addition of thymine peroxyl radical to guanine. Chem Res Toxicol. 15(3):445–454.
  • Du J, Cullen JJ, Buettner GR. 2012. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta. 1826(2):443–457.
  • Fahey RC, Vojnovic B, Michael BD. 1991. The effects of counter-ion condensation and co-ion depletion upon the rates of chemical repair of poly(U) radicals by thiols. Int J Radiat Biol. 59(4):885–899.
  • Foffi G, Pastore A, Piazza F, Temussi PA. 2013. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10–14 June 2012). Phys Biol. 10:040301.
  • Ford E, Hughes MN, Wardman P. 2002. Kinetics of the reactions of nitrogen dioxide with glutathione, cysteine, and uric acid at physiological pH. Free Radic Biol Med. 32(12):1314–1323.
  • Fulford J, Nikjoo H, Goodhead DT, O’Neill P. 2001. Yields of SSB and DSB induced in DNA by Al(K) ultrasoft X-rays and alpha-particles: comparison of experimental and simulated yields. Int J Radiat Biol. 77(10):1053–1066.
  • Gamcsik MP, Kasibhatla MS, Teeter SD, Colvin OM. 2012. Glutathione levels in human tumors. Biomarkers. 17(8):671–691.
  • Greenberg MM, editor 2009. Radical and radical ion reactivity in nucleic acid chemistry. Hoboken (NJ): Wiley.
  • Greenberg MM. 2016. Reactivity of nucleic acid radicals. Adv Phys Org Chem. 50:119–202.
  • Grima R, Schnell S. 2006. A systematic investigation of the rate laws valid in intracellular environments. Biophys Chem. 124(1):1–10.
  • Grimes DR, Partridge M. 2015. A mechanistic investigation of the oxygen fixation hypothesis and oxygen enhancement ratio. Biomed Phys Eng Express. 1(4):045209.
  • Guichard M, Lespinasse F, Estelin R, Gerbaulet A, Haie C, Lartigau E, Malaise EP, Micheau C, Prade M, Richard JM. 1990. Glutathione and cysteine levels in human tumour biopsies. Br J Radiol. 63(751):557–561.
  • Gulston M, Fulford J, Jenner T, de Lara C, O’Neill P. 2002. Clustered DNA damage induced by gamma radiation in human fibroblasts (HF19), hamster (V79-4) cells and plasmid DNA is revealed as Fpg and Nth sensitive sites. Nucleic Acids Res. 30(15):3464–3472.
  • Harrop HA, Held KD, Michael BD. 1991. The oxygen effect: variation of the K-value and lifetimes of O2-dependent damage in some glutathione-deficient mutants of Escherichia coli. Int J Radiat Biol. 59(5):1237–1251.
  • Hawkins CL, Davies MJ. 2019. Detection, identification, and quantification of oxidative protein modifications. J Biol Chem. 294(51):19683–19708.
  • Haywood RM, Wardman P, Gault DT, Linge C. 1999. Ruby laser irradiation (694 nm) of human skin biopsies: assessment by ESR spectroscopy of free radical production and oxidative stress during laser depilation. Photochem Photobiol. 70(3):348–352.
  • Hedley DW, Nicklee T, Moreno-Merlo F, Pintilie M, Fyles A, Milosevic M, Hill RP. 2005. Relations between non-protein sulfydryl levels in the nucleus and cytoplasm, tumor oxygenation, and clinical outcome of patients with uterine cervical carcinoma. Int J Radiat Oncol Biol Phys. 61(1):137–144.
  • Held KD, Harrop HA, Michael BD. 1984. Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA. III. Reaction rates. Int J Radiat Biol Relat Stud Phys Chem Med. 45(6):627–636.
  • Hicks M, Gebicki JM. 1993. Continuous measurement of oxygen consumption by linoleic acid membranes exposed to free radicals generated by gamma-radiation. Int J Radiat Biol. 64(2):143–148.
  • Hildenbrand K, Schulte-Frohlinde D. 1997. Time-resolved EPR studies on the reaction rates of peroxyl radicals of poly(acrylic acid) and of calf thymus DNA with glutathione. Re-examination of a rate constant for DNA. Int J Radiat Biol. 71(4):377–385.
  • Hiroki A, Pimblott SM, LaVerne JA. 2002. Hydrogen peroxide production in the radiolysis of water with high radical scavenger concentrations. J Phys Chem A. 106(40):9352–9358.
  • Hong S, Pawel GT, Pei R, Lu Y. 2021. Recent progress in developing fluorescent probes for imaging cell metabolites. Biomed Mater. 16(4):044108.
  • Horan AD, Koch CJ. 2001. The K(m) for radiosensitization of human tumor cells by oxygen is much greater than 3 mmHg and is further increased by elevated levels of cysteine. Radiat Res. 156(4):388–398.
  • Hornig D. 1975. Distribution of ascorbic acid, metabolites and analogues in man and animals. Ann NY Acad Sci. 258:103–117.
  • Howard-Flanders P. 1960. Effect of oxygen on the radiosensitivity of bacteriophage in the presence of sulphydryl compounds. Nature. 186(4723):485–487.
  • Jansen J, Knoll J, Beyreuther E, Pawelke J, Skuza R, Hanley R, Brons S, Pagliari F, Seco J. 2021. Does FLASH deplete oxygen? Experimental evaluation for photons, protons, and carbon ions. Med Phys. 48(7):3982–3990.
  • Jovanovic SV, Simic MG. 1989. The DNA guanyl radical: kinetics and mechanisms of generation and repair. Biochim Biophys Acta. 1008(1):39–44.
  • Jurkiewicz BA, Buettner GR. 1994. Ultraviolet light-induced free radical formation in skin: an electron paramagnetic resonance study. Photochem Photobiol. 59(1):1–4.
  • Jurkiewicz BA, Buettner GR. 1996. EPR detection of free radicals in UV-irradiated skin: mouse versus human. Photochem Photobiol. 64(6):918–922.
  • Klann MT, Lapin A, Reuss M. 2011. Agent-based simulation of reactions in the crowded and structured intracellular environment: influence of mobility and location of the reactants. BMC Syst Biol. 5:71.
  • Koch CJ. 1998. The mechanisms of radiation protection by non-protein sulfhydryls: glutathione, cysteine and cysteamine. In: Bump EA, Malaker K, editors. Radioprotectors: chemical, biological, and clinical perspectives. Boca Raton (FL): CRC Press; p. 25–51.
  • Koch CJ, Evans SM. 1996. Cysteine concentrations in rodent tumors: unexpectedly high values may cause therapy resistance. Int J Cancer. 67(5):661–667.
  • Koch CJ, Stobbe CC, Bump EA. 1984. The effect on the km for radiosensitization at 0 °C of thiol depletion by diethylmaleate pretreatment: quantitative differences found using the radiation sensitizing agent misonidazole or oxygen. Radiat Res. 98(1):141–153.
  • Kwapiszewska K, Szczepański K, Kalwarczyk T, Michalska B, Patalas-Krawczyk P, Szymański J, Andryszewski T, Iwan M, Duszyński J, Hołyst R. 2020. Nanoscale viscosity of cytoplasm is conserved in human cell lines. J Phys Chem Lett. 11(16):6914–6920.
  • Labarbe R, Hotoiu L, Barbier J, Favaudon V. 2020. A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect. Radiother Oncol. 153:303–310.
  • Lai Y, Jia X, Chi Y. 2021. Modeling the effect of oxygen on the chemical stage of water radiolysis using GPU-based microscopic Monte Carlo simulations, with an application in FLASH radiotherapy. Phys Med Biol. 66(2):025004.
  • Lancaster JR. Jr. 2006. Nitroxidative, nitrosative, and nitrative stress: kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chem Res Toxicol. 19(9):1160–1174.
  • LaVerne JA, Pimblott SM. 1993. Yields of hydroxyl radical and hydrated electron scavenging reactions in aqueous solutions of biological interest. Radiat Res. 135(1):16–23.
  • Lertnaisat P, Katsumura Y, Mukai S, Umehara R, Shimizu Y, Suzuki M. 2016. Primary yields and reaction sets with corresponding rate constants for computer simulation of water radiolysis at elevated temperature. J Nucl Sci Technol. 53(11):1816–1823.
  • Lim JB, Langford TF, Huang BK, Deen WM, Sikes HD. 2016. A reaction-diffusion model of cytosolic hydrogen peroxide. Free Radic Biol Med. 90:85–90.
  • Liu B, Poolman B, Boersma AJ. 2017. Ionic strength sensing in living cells. ACS Chem Biol. 12(10):2510–2514.
  • Liu C, Lin Q, Yun Z. 2015. Cellular and molecular mechanisms underlying oxygen-dependent radiosensitivity. Radiat Res. 183(5):487–496.
  • Liu CC, Gebicki JM. 2012. Intracellular GSH and ascorbate inhibit radical-induced protein chain peroxidation in HL-60 cells. Free Radic Biol Med. 52(2):420–426.
  • Lomax ME, Folkes LK, O’Neill P. 2013. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol). 25(10):578–585.
  • Lomax ME, Gulston MK, O’Neill P. 2002. Chemical aspects of clustered DNA damage induction by ionising radiation. Radiat Prot Dosimetry. 99(1–4):63–68.
  • Luby-Phelps K. 1999. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. In: Walter H, Brooks DE, Srere PA, editors. Int Rev Cytol. Cambridge (MA): Academic Press; p. 189–221.
  • Luby-Phelps K. 2013. The physical chemistry of cytoplasm and its influence on cell function: an update. Mol Biol Cell. 24(17):2593–2596.
  • Luxford C, Dean RT, Davies MJ. 2000. Radicals derived from histone hydroperoxides damage nucleobases in RNA and DNA. Chem Res Toxicol. 13(7):665–672.
  • Ma Y, Abbate V, Hider RC. 2015. Iron-sensitive fluorescent probes: monitoring intracellular iron pools. Metallomics. 7(2):212–222.
  • Madden KP, Mezyk SP. 2011. Critical review of aqueous solution reaction rate constants for hydrogen atoms. J Phys Chem Ref Data. 40(2):023103.
  • Mastro AM, Babich MA, Taylor WD, Keith AD. 1984. Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc Natl Acad Sci USA. 81(11):3414–3418.
  • McKeown SR. 2014. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br J Radiol. 87(1035):20130676.
  • Michael BD. 1987. Free radical injury to irradiated cells: evidence from rapid irradiation studies. Br J Cancer Suppl. 8:158–162.
  • Michael BD, Davies S, Held KD. 1986. Ultrafast chemical repair of DNA single and double strand break precursors in irradiated V79 cells. Basic Life Sci. 38:89–100.
  • Michaels HB, Hunt JW. 1978. A model for radiation damage in cells by direct effect and by indirect effect: a radiation chemistry approach. Radiat Res. 74(1):23–34.
  • Mikkelsen RB, Wardman P. 2003. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene. 22(37):5734–5754.
  • Milligan JR, Aguilera JA, Hoang O, Ly A, Tran NQ, Ward JF. 2004. Repair of guanyl radicals in plasmid DNA by electron transfer is coupled to proton transfer. J Am Chem Soc. 126(6):1682–1687.
  • Milligan JR, Aguilera JA, Mares EJ, Paglinawan RA, Ward JF. 2001. Reaction of guanyl radicals in plasmid DNA with biological reductants: chemical repair of DNA damage produced by the direct effect of ionizing radiation. Int J Radiat Biol. 77(11):1095–1108.
  • Misiaszek R, Crean C, Joffe A, Geacintov NE, Shafirovich V. 2004. Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair mechanisms via radical trapping. J Biol Chem. 279(31):32106–32115.
  • Montay-Gruel P, Acharya MM, Petersson K, Alikhani L, Yakkala C, Allen BD, Ollivier J, Petit B, Jorge PG, Syage AR, et al. 2019. Long-term neurocognitive benefits of flash radiotherapy driven by reduced reactive oxygen species. Proc Natl Acad Sci USA. 116(22):10943–10951.
  • Nauser T, Gebicki JM. 2020. Antioxidants and radical damage in a hydrophilic environment: chemical reactions and concepts. Essays Biochem. 64(1):67–74.
  • Nauser T, Koppenol WH, Schöneich C. 2015. Protein thiyl radical reactions and product formation: a kinetic simulation. Free Radic Biol Med. 80:158–163.
  • Neta P, Grodkowski J, Ross AB. 1996. Rate constants for reactions of aliphatic carbon-centered radicals in aqueous solution. J Phys Chem Ref Data. 25(3):709–1050.
  • Neta P, Huie RE, Ross AB. 1988. Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data. 17(3):1027–1284.
  • Neta P, Huie RE, Ross AB. 1990. Rate constants for reactions of peroxyl radicals in fluid solutions. J Phys Chem Ref Data. 19(2):413–513.
  • Niki E, Noguchi N. 2004. Dynamics of antioxidant action of vitamin E. Acc Chem Res. 37(1):45–51.
  • Nikjoo H, O’Neill P, Goodhead DT, Terrissol M. 1997. Computational modelling of low-energy electron-induced DNA damage by early physical and chemical events. Int J Radiat Biol. 71(5):467–483.
  • O’Neill P, Chapman PW. 1985. Potential repair of free radical adducts of dGMP and dG by a series of reductants. A pulse radiolytic study. Int J Radiat Biol Relat Stud Phys Chem Med. 47(1):71–80.
  • O’Neill P, Wardman P. 2009. Radiation chemistry comes before radiation biology. Int J Radiat Biol. 85(1):9–25.
  • Overgaard J. 2007. Hypoxic radiosensitization: adored and ignored. J Clin Oncol. 25(26):4066–4074.
  • Pastina B, LaVerne JA. 2001. Effect of molecular hydrogen on hydrogen peroxide in water radiolysis. J Phys Chem A. 105(40):9316–9322.
  • Pimblott SM, LaVerne JA. 1990. Comparison of stochastic and deterministic methods for modeling spur kinetics. Radiat Res. 122(1):12–23.
  • Pimblott SM, LaVerne JA. 1992. Cooperative effects of scavengers on the scavenged yield of the hydrated electron. J Phys Chem. 96(22):8904–8909.
  • Pimblott SM, LaVerne JA, Bartels DM, Jonah CD. 1996. Reconciliation of transient absorption and chemically scavenged yields of the hydrated electron in radiolysis. J Phys Chem. 100(22):9412–9415.
  • Pinchuk I, Lichtenberg D. 2014. Analysis of the kinetics of lipid peroxidation in terms of characteristic time-points. Chem Phys Lipids. 178:63–76.
  • Portess DI, Bauer G, Hill MA, O’Neill P. 2007. Low-dose irradiation of nontransformed cells stimulates the selective removal of precancerous cells via intercellular induction of apoptosis. Cancer Res. 67(3):1246–1253.
  • Prise KM, Davies S, Michael BD. 1992. A comparison of the chemical repair rates of free radical precursors of DNA damage and cell killing in Chinese hamster V79 cells. Int J Radiat Biol. 61(6):721–728.
  • Quijano C, Romero N, Radi R. 2005. Tyrosine nitration by superoxide and nitric oxide fluxes in biological systems: modeling the impact of superoxide dismutase and nitric oxide diffusion. Free Radic Biol Med. 39(6):728–741.
  • Raleigh JA, Kremers W, Gaboury B. 1977. Dose-rate and oxygen effects in models of lipid membranes: linoleic acid. Int J Radiat Biol Relat Stud Phys Chem Med. 31(3):203–213.
  • Ramos-Méndez J, Domínguez-Kondo N, Schuemann J, McNamara A, Moreno-Barbosa E, Faddegon B. 2020. Let-dependent intertrack yields in proton irradiation at ultra-high dose rates relevant for FLASH therapy. Radiat Res. 194(4):351–362.
  • Razskazovskii Y, Sevilla MD. 1996. Reactions of sulphonyl peroxyl radicals with DNA and its components: hydrogen abstraction from the sugar backbone versus addition to pyrimidine double bonds. Int J Radiat Biol. 69(1):75–87.
  • Richardson RB, Harper ME. 2016. Mitochondrial stress controls the radiosensitivity of the oxygen effect: implications for radiotherapy. Oncotarget. 7(16):21469–21483.
  • Robert G, Wagner JR. 2020. Tandem lesions arising from 5-(uracilyl)methyl peroxyl radical addition to guanine: product analysis and mechanistic studies. Chem Res Toxicol. 33(2):565–575.
  • Roots R, Okada S. 1975. Estimation of life times and diffusion distances of radicals involved in x-ray-induced DNA strand breaks or killing of mammalian cells. Radiat Res. 64(2):306–320.
  • Roos A, Boron WF. 1981. Intracellular pH. Physiol Rev. 61(2):296–434.
  • Saenko Y, Cieslar-Pobuda A, Skonieczna M, Rzeszowska-Wolny J. 2013. Changes of reactive oxygen and nitrogen species and mitochondrial functioning in human K562 and HL60 cells exposed to ionizing radiation. Radiat Res. 180(4):360–366.
  • Salvador A, Antunes F, Pinto RE. 1995. Kinetic modelling of in vitro lipid peroxidation experiments-‘low level’ validation of a model of in vivo lipid peroxidation. Free Radic Res. 23(2):151–172.
  • Schnell S, Turner TE. 2004. Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. Prog Biophys Mol Biol. 85(2–3):235–260.
  • Schuemann J, McNamara AL, Ramos-Méndez J, Perl J, Held KD, Paganetti H, Incerti S, Faddegon B. 2019. TOPAS-nBIO: an extension to the TOPAS simulation toolkit for cellular and sub-cellular radiobiology. Radiat Res. 191(2):125–138.
  • Schuler RH, Patterson LK, Janata E. 1980. Yield for the scavenging of OH radicals in the radiolysis of N2O-saturated aqueous solutions. J Phys Chem. 84(16):2088–2089.
  • Schulte-Frohlinde D, Behrens G, Önal A. 1986. Lifetime of peroxyl radicals of poly(U), poly(A) and single-and double-stranded DNA and the rate of their reaction with thiols. Int J Radiat Biol Relat Stud Phys Chem Med. 50(1):103–110.
  • Schulte-Frohlinde D, Ludwig DC, Rettberg P. 1994. Influence of thiols and oxygen on the survival of gamma-irradiated plasmid DNA and cells. Adv Space Res. 14(10):277–284.
  • Schüssler H, Navaratnam S, Distel L. 2005. Rate constants for the reactions of DNA with hydrated electrons and with OH-radicals. Radiat Phys Chem. 73(3):163–168.
  • Scirè A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G, Galli F, Armeni T. 2019. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors. 45(2):152–168.
  • Shafirovich V, Cadet J, Gasparutto D, Dourandin A, Geacintov NE. 2001. Nitrogen dioxide as an oxidizing agent of 8-oxo-7,8-dihydro-2′-deoxyguanosine but not of 2′-deoxyguanosine. Chem Res Toxicol. 14(2):233–241.
  • Shragge PC, Michaels HB, Hunt JW. 1971. Factors affecting the rate of hydrated electron attack on polynucleotides. Radiat Res. 47(3):598–611.
  • Smith S, Grima R. 2019. Spatial stochastic intracellular kinetics: a review of modelling approaches. Bull Math Biol. 81(8):2960–3009.
  • Spitz DR, Buettner GR, Petronek MS, St-Aubin JJ, Flynn RT, Waldron TJ, Limoli CL. 2019. An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses. Radiother Oncol. 139:23–27.
  • Stewart RD, Yu VK, Georgakilas AG, Koumenis C, Park JH, Carlson DJ. 2011. Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat Res. 176(5):587–602.
  • Swiatla-Wojcik D, Buxton GV. 1998. Modelling of linear energy transfer effects on track core processes in the radiolysis of water up to 300 °C. Faraday Trans. 94(15):2135–2141.
  • Tran HN, Ramos-Méndez J, Shin WG, Perrot Y, Faddegon B, Okada S, Karamitros M, Davídková M, Štěpán V, Incerti S, et al. 2021. Assessment of DNA damage with an adapted independent reaction time approach implemented in geant4-DNA for the simulation of diffusion-controlled reactions between radio-induced reactive species and a chromatin fiber. Med Phys. 48(2):890–901.
  • Travasso RDM, Sampaio dos Aidos F, Bayani A, Abranches P, Salvador A. 2017. Localized redox relays as a privileged mode of cytoplasmic hydrogen peroxide signaling. Redox Biol. 12:233–245.
  • Udovičić L, Mark F, Bothe E, Schulte-Frohlinde D. 1991. Non-homogeneous kinetics in the competition of single-stranded calf-thymus DNA and low-molecular weight scavengers for OH radicals: a comparison of experimental data and theoretical models. Int J Radiat Biol. 59(3):677–697.
  • Udovičić LJ, Mark F, Bothe E. 1994. Yields of single-strand breaks in double-stranded calf thymus DNA irradiated in aqueous solution in the presence of oxygen and scavengers. Radiat Res. 140(2):166–171.
  • Verkman AS. 2002. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci. 27(1):27–33.
  • von Sonntag C. 1987. The chemical basis of radiation biology. London: Taylor & Francis.
  • von Sonntag C. 2006. Free-radical-induced DNA damage and its repair. A chemical perspective. Berlin, Germany: Springer.
  • von Sonntag C, Schuchmann HP. 1991. The elucidation of peroxyl radical reactions in aqueous solution with the help of radiation-chemical methods. Angew Chem Int Ed Engl. 30(10):1229–1253.
  • Vozenin MC, Hendry JH, Limoli CL. 2019. Biological benefits of ultra-high dose rate flash radiotherapy: sleeping beauty awoken. Clin Oncol (R Coll Radiol). 31(7):407–415.
  • Ward JF. 1994. The complexity of DNA damage: relevance to biological consequences. Int J Radiat Biol. 66(5):427–432.
  • Ward JF, Blakely WF, Joner EI. 1985. Mammalian cells are not killed by DNA single-strand breaks caused by hydroxyl radicals from hydrogen peroxide. Radiat Res. 103(3):383–392.
  • Ward JF, Evans JW, Limoli CL, Calabro-Jones PM. 1987. Radiation and hydrogen peroxide induced free radical damage to DNA. Br J Cancer Suppl. 8:105–112.
  • Ward JF, Webb CF, Limoli CL, Milligan JR. 1990. DNA lesions produced by ionizing radiation: locally multiply damaged sites. In: Wallace SS, Painter RB, editors. Ionizing radiation damage to DNA: molecular aspects. New York (NY): Wiley-Liss; p. 43–50.
  • Wardman P. 1999. Thiyl radicals in biology: their role as a ‘molecular switch’ central to cellular oxidative stress. In: Alfassi ZB, editor. The chemistry of S-centered radicals. New York (NY): Wiley; p. 289–309.
  • Wardman P. 2020. Radiotherapy using high-intensity pulsed radiation beams (FLASH): a radiation-chemical perspective. Radiat Res. 194(6):607–617.
  • Wardman P. 2021. Comment on: may oxygen depletion explain the FLASH effect? A chemical track structure analysis. Radiother Oncol. 163:91–92.
  • Wardman P, Dennis MF, Stratford MRL, White J. 1992. Extracellular: intracellular and subcellular concentration gradients of thiols. Int J Radiat Oncol Biol Phys. 22(4):751–754.
  • Wardman P, Dennis MF, White J. 1989. A probe for intracellular concentrations of drugs: delayed fluorescence from acridine orange. Int J Radiat Oncol Biol Phys. 16(4):935–938.
  • Wardman P, von Sonntag C. 1995. Kinetic factors that control the fate of thiyl radicals in cells. Methods Enzymol. 251:31–45.
  • Willson RL. 1970. Pulse radiolysis studies of electron transfer in aqueous disulphide solutions. J Chem Soc D. 21:1425–1426.
  • Wu L, Sedgwick AC, Sun X, Bull SD, He XP, James TD. 2019. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Acc Chem Res. 52(9):2582–2597.
  • Yamamori T, Yasui H, Yamazumi M, Wada Y, Nakamura Y, Nakamura H, Inanami O. 2012. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med. 53(2):260–270.
  • Yin H, Xu L, Porter NA. 2011. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 111(10):5944–5972.
  • Zhu H, Li J, Deng X, Qiu R, Wu Z, Zhang H. 2021. Modeling of cellular response after FLASH irradiation: a quantitative analysis based on the radiolytic oxygen depletion hypothesis. Phys Med Biol. 66:185009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.