185
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Radiation-induced effects on bone marrow of bank voles inhabiting the Chornobyl exclusion zone

, , &
Pages 1366-1375 | Received 21 Oct 2021, Accepted 08 Feb 2022, Published online: 14 Mar 2022

References

  • Baker RJ, Hamilton MJ, Van Den Bussche RA, Wiggins LE, Sugg DW, Smith MH, Lomakin MD, Gaschak SP, Bundova EG, Rudenskaya GA, et al. 1996. Small mammals from the most radioactive sites near the Chernobyl nuclear power plant. J Mammal. 77(1):155–170.
  • Beresford NA, Copplestone D. 2011. Effects of ionizing radiation on wildlife: what knowledge have we gained between the Chernobyl and Fukushima Accidents? Integr Environ Assess Manag. 7(3):371–373.
  • Beresford NA, Barnett CL, Gashchak S, Maksimenko A, Guliaichenko E, Wood MD, Izquierdo M. 2020. Radionuclide transfer to wildlife at a ‘reference site’ in the Chernobyl exclusion zone and resultant radiation exposures. J Environ Radioact. 211:105661.
  • Boei JJ, Natarajan AT. 1996. Classification of X-ray-induced Robertsonian fusion-like congurations in mouse splenocytes. Int J Radiat Biol. 69(4):421–427.
  • Bondarkov MD, Maksimenko AM, Gashchak SP, Zheltonozhsky VA, Jannik GT, FarfáN EB. 2011. Method for simultaneous in vivo 90Sr and 137Cs content measurements in bodies of small animals and other environmental objects developed for conditions of the Chernobyl Exclusion Zone. Health Phys. 101(4):384–393.
  • Bradshaw C, Kapustka L, Barnthouse L, Brown J, Ciffroy P, Forbes V, Geras'kin S, Kautsky U, Bréchignac F. 2014. Using an Ecosystem Approach to complement protection schemes based on organism-level endpoints. J Environ Radioact. 136:98–104.
  • Bréchignac F, Doi M. 2009. Challenging the current strategy of radiological protection of the environment: arguments for an ecosystem approach. J Environ Radioact. 100(12):1125–1134.
  • Bréchignac F, Oughton D, Mays C, Barnthouse L, Beasley JC, Bonisoli-Alquati A, Bradshaw C, Brown J, Dray S, Geras'kin S, et al. 2016. Addressing ecological effects of radiation on populations and ecosystems to improve protection of the environment against radiation: agreed statements from a Consensus Symposium. J Environ Radioact. 158–159:21–29.
  • Burdo OO, Lypska AI, Riabchenko NM, Sova OA. 2020. Peculiarities of hematopoiesis in small rodents from the Chornobyl Exclusion Zone on the background of extreme environment. J Environ Radioact. 211:105758.
  • Capanna E, Redi CA. 1994. Chromosomes and microevolutionary processes. Italian J Zool. 61(4):285–294.
  • Chesser RK, Rodgers BE, Wickliffe JK, Gaschak S, Chizhevsky I, Phillips CJ, Baker RJ. 2001. Accumulation of 137Cesium and 90Strontium from abiotic and biotic sources in rodents at Chornobyl, Ukraine. Environ Toxicol Chem. 20(9):1927–1935.
  • Chesser RK, Sugg DW, Lomakin MD, VanDen Bussche RA, DeWoody JA, Jagoe CH, Dallas CE, Whicker FW, Smith MH, Gaschak SP, et al. 2000. Concentrations and dose rate estimates of 134,137Cesium and 90Strontium in small mammals at Chornobyl, Ukraine. Environ Toxicol Chem. 19:305–312.
  • Criswell K, Krishna G, Zielinski D, Urda G, Theiss J, Juneau P, Bleavins MR. 1998. Use of acridine orange in: flow cytometric assessment of micronuclei induction. Mutat Res. 414(1–3):63–75.
  • Criswell K, Krishna G, Zielinski D, Urda G, Theiss J, Juneau P, Bulera S, Bleavins MR. 2003. Validation of a flow cytometric acridine orange micronuclei methodology in rats. Mutat Res. 528(1–2):1–18.
  • Garagna S, Page J, Fernandez-Donoso R, Zuccotti M, Searle JB. 2014. The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation. Chromosoma. 123(6):529–544.
  • Garnier-Laplace J, Geras'kin S, Della-Vedova C, Beaugelin-Seiller K, Hinton TG, Real A, Oudalova A. 2013. Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. J Environ Radioact. 121:12–21.
  • Gaschak SP, Buntova EG, Rudenska GA, Chizhevsky IV. 2000. Species structure peculiarities of insectivores and rodents of the Chornobyl exclusion zone. Vestn Zool. 34 (6):51–56.
  • Gaschak SP, Maklyuk YA, Maksimenko AM, Bondarkov MD, Jannik GT, Farfán EB. 2011. Radiation ecology issues associated with Murine rodents and shrews in the Chernobyl exclusion zone. Health Phys. 101 (4):416–430.
  • Gaschak SP, Makliuk YA, Maksimenko AM, Bondarkov MD, Chizhevsky IV, Caldwell E, Timothy JG, Farfán EB. 2011. Frequency distributions of 90Sr and 137Cs concentrations in an ecosystem of the “Red forest” area in the Chernobyl exclusion zone. Health Phys. 101(4):409–415.
  • Goncharova R, Ryabokon N. 1998. Results of long-term genetic monitoring of animal population chronically irradiated in the radiocontaminated areas. In: Imanaka T, editor. Research activities on the radiological consequences of the Chernobyl NPS accident and social activities to assist the survivors from the accident. Kyoto: Kyoto University; p. 194–202.
  • Goncharova RI, Ryabokon NI. 1995. Dynamics of cytogenetic injuries in natural populations of bank vole in the Republic of Belarus. Radiat Prot Dosimetry. 62(1–2):37–40.
  • Grigorkina EB, Pashnina IA. 2007. On the problem of radioadaptation in small Mammals (Ecological specialization of a species, radioresistance, hemopoiesis, immunity). Radiat Biol Radioecol. 47(3):371–378.
  • Hancock S, Vo NTK, Goncharova RI, Seymour CB, Byun SH, Mothersill CE. 2020. One-Decade-Spanning transgenerational effects of historic radiation dose in wild populations of bank voles exposed to radioactive contamination following the Chernobyl nuclear disaster. Environ Res. 180:108816.
  • Hauptmann M, Daniels RD, Cardis E, Cullings HM, Kendall G, Laurier D, Linet MS, Little MP, Lubin JH, Preston DL, Richardson DB, Stram DO, et al. 2020. Epidemiological studies of low-dose ionizing radiation and cancer: summary bias assessment and meta-analysis. J Natl Cancer Inst Monogr. 2020(56):188–200.
  • Kashparov VA, Oughton DH, Zvarich SI, Protsak VP, Levchuk SE. 1999. Kinetics of fuel particle weathering and 90Sr mobility in the Chernobyl 30-km exclusion zone. Health Phys. 76(3):251–259.
  • Kostenko SA, Ermakova OV, Sushko SN, Fyedorova EV, Dzhus PP, Baschlykova LA, Kurylenko YF, Raskosha O, Savin AO, Shaforost AS. 2015. [Cytogenetic indices for somatic mutagenesis in mammals exposed to chronic low-dose irradiation]. Radiats Biol Radioecol. 55(1):35–42.
  • Kulygina OI. 2001. Hematological and cytogenetic consequences of the Chernobyl accident for three species of mouse-like rodents living in the exclusion zone [Dissertation]. Cand Sci Biol. 03.00.01. RSL OD, 61 02-3/377-2.
  • Liu SZ. 2010. Biological effects of low level exposures to ionizing radiation: theory and practice. Hum Exp Toxicol. 29(4):275–281.
  • Lypska AI, Zheltonozhskaya MV, Nikolaev VI, Burdo OO, Kulisch NV. 2011. Content of the technogenic radionuclides accumulation in small mammals from the Chornobyl exclusion zone in remote period after the accident. Nucl Phys Energy. 12(2):180–185.
  • Maklyuk YA, Gashchak SP, Maksimenko AM, Bondarkov MD, Beresford N. 2007. Value and structure of dose rates in small mammals of the Chernobyl Zone 19 years after the accident. Nucl Phys Energy. 21:81–91.
  • Maklyuk YA, Maksimenko AM, Gashchak SP, Bondarkov MD, Chyzhevsky IV. 2007. Long-term dynamics of radioactive contamination (90Sr, 137Cs) of small mammals in the Chernobyl zone. Ecology. 3:198–206.
  • Mothersill C, Seymour C. 2003. Low-dose radiation effects: experimental hematology and the changing paradigm. Exp Hematol. 31(6):437–445.
  • Mothersill CE, Oughton DH, Schofield PN, Abend M, Adam-Guillermin C, Ariyoshi K, Beresford NA, Bonisoli-Alquati A, Cohen J, Dubrova Y, et al. 2020. From tangled banks to toxic bunnies; a reflection on the issues involved in developing an ecosystem approach for environmental radiation protection. Int J Radiat Biol. 21:1–16.
  • Nosova LI, Alesina MY. 2006. State of cellular immunity in the system of nonspecific defense of irradiated rats. Influence of radiation factor of the Chornobyl exclusion zone on animals. Kyiv: Atika; p. 119–126.
  • OECD. 2016. Test No. 475: mammalian bone marrow chromosomal aberration test. OECD guidelines for the testing of chemicals, section 4. Paris: OECD Publishing.
  • Rodgers BE, Baker RJ. 2000. Freqencies of micronuclei in bank voles from zone of high radiation at Chornobyl, Ukraine. ET&C 19: 1644–1648.
  • Rodionova NK, Lypska AI, Kuchma MD, Serkiz YI, Drozd IP, Alesina MY. 2006. Dose-dependent changes in the system of bone marrow hematopoiesis and effects in animals after long-term action of the Chernobyl radionuclides’ release. Influence of radiation factor of the Chornobyl exclusion zone on animals. Kyiv: Atika. p. 173–196.
  • Ryabokon N, Goncharova R. 2006. Transgenerational accumulation of radiation damage in small mammals chronically exposed to Chernobyl fallout. Radiat Environ Biophys. 45(3):167–177.
  • Ryabokon NI, Smolich II, Kudryashov VP, Goncharova RI. 2005. Long-term development of the radionuclide exposure of murine rodent populations in Belarus after the Chernobyl accident. Radiat Environ Biophys. 44(3):169–181.
  • Serkiz YI, Indyk VM, Pinchuk LB, Rodionova NK, Savtsova ZD, Drozd IP, Lypska AI. 2003. Short-term and long-term effects of radiation on laboratory animals and their progeny living in the Chernobyl nuclear power plant region. ESPR. 1:107–116.
  • Zheltonozhska MV, Kulich NV, Lypska AI, Nikolaev VI, Strilchuk MV. 2012. New methodological approaches to the simultaneous measurement of the 90Sr and 137Cs activity in environmental samples. Nucl Phys Energy. 13(4):403–407.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.