111
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Response of murine neural stem/progenitor cells to gamma-neutron radiation

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1559-1570 | Received 29 Nov 2021, Accepted 09 Mar 2022, Published online: 31 Mar 2022

References

  • Acharya MM, Lan ML, Kan VH, Patel NH, Giedzinski E, Tseng BP, Limoli CL. 2010. Consequences of ionizing radiation-induced damage in human neural stem cells. Free Radic Biol Med. 49(12):1846–1855.
  • Aguirre A, Rubio ME, Gallo V. 2010. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature. 467(7313):323–327.
  • Arzumanov SS, Safronov VV, Strepetov AN. 2018. Determination of a dose absorbed in a biological sample under mixed gamma-neutron irradiation. Tech Phys. 63(10):1533–1536.
  • Asaithamby A, Hu B, Chen DJ. 2011. Unrepaired clustered DNA lesions induce chromosome breakage in human cells. Proc Natl Acad Sci USA. 108(20):8293–8298.
  • Ayuso-Sacido A, Moliterno JA, Kratovac S, Kapoor GS, O'Rourke DM, Holland EC, García-Verdugo JM, Roy NS, Boockvar JA. 2010. Activated EGFR signaling increases proliferation, survival, and migration and blocks neuronal differentiation in post-natal neural stem cells. J Neurooncol. 97(3):323–337.
  • Barazzuol L, Hopkins SR, Ju L, Jeggo PA. 2019. Distinct response of adult neural stem cells to low versus high dose ionising radiation. DNA Repair. 76:70–75.
  • Barazzuol L, Ju L, Jeggo PA. 2017. A coordinated DNA damage response promotes adult quiescent neural stem cell activation. PLOS Biol. 15(5):e2001264.
  • Bohgaki T, Bohgaki M, Hakem R. 2010. DNA double-strand break signaling and human disorders. Genome Integr. 1(1):15.
  • Brooks AL, Hoel DG, Preston RJ. 2016. The role of dose rate in radiation cancer risk: evaluating the effect of dose rate at the molecular, cellular and tissue levels using key events in critical pathways following exposure to low LET radiation. Int J Radiat Biol. 92(8):405–426.
  • Buono KD, Goodus MT, Moore L, Ziegler AN, Levison SW. 2015. Chapter 15 – multimarker flow cytometric characterization, isolation and differentiation of neural stem cells and progenitors of the normal and injured mouse subventricular zone. In: Pruszak J, editor. Neural surface antigens. Boston (MA): Academic Press; p. 175–186.
  • Buono KD, Vadlamuri D, Gan Q, Levison SW. 2012. Leukemia inhibitory factor is essential for subventricular zone neural stem cell and progenitor homeostasis as revealed by a novel flow cytometric analysis. Dev Neurosci. 34(5):449–462.
  • Cavazzin C, Neri M, Gritti A. 2013. Isolate and culture precursor cells from the adult periventricular area. Methods Mol Biol. 1059:25–40.
  • Chen H, Goodus MT, de Toledo SM, Azzam EI, Levison SW, Souayah N. 2015. Ionizing radiation perturbs cell cycle progression of neural precursors in the subventricular zone without affecting their long-term self-renewal. ASN Neuro. 7(3):175909141557802.
  • Cochard LM, Levros LC Jr., Joppé SE, Pratesi F, Aumont A, Fernandes KJL. 2021. Manipulation of EGFR-induced signaling for the recruitment of quiescent neural stem cells in the adult mouse forebrain. Front Neurosci. 15:621076.
  • Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, Doetsch F. 2014. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron. 82(3):545–559.
  • Coskun V, Wu H, Blanchi B, Tsao S, Kim K, Zhao J, Biancotti JC, Hutnick L, Krueger RC, Fan G, et al. 2008. CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA. 105(3):1026–1031.
  • Daynac M, Chicheportiche A, Pineda JR, Gauthier LR, Boussin FD, Mouthon M-A. 2013. Quiescent neural stem cells exit dormancy upon alteration of GABAAR signaling following radiation damage. Stem Cell Res. 11(1):516–528.
  • Deleyrolle LP, Rietze RL, Reynolds BA. 2008. The neurosphere assay, a method under scrutiny. Acta Neuropsychiatr. 20(1):2–8.
  • Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. 1998. Neurogenesis in the adult human hippocampus. Nat Med. 4(11):1313–1317.
  • Fukuda S, Kato F, Tozuka Y, Yamaguchi M, Miyamoto Y, Hisatsune T. 2003. Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci. 23(28):9357–9366.
  • Goodhead DT. 2019. Neutrons are forever! Historical perspectives. Int J Radiat Biol. 95(7):957–984.
  • Haldbo-Classen L, Amidi A, Wu LM, Lukacova S, Oettingen GV, Gottrup H, Zachariae R, Høyer M. 2019. Long-term cognitive dysfunction after radiation therapy for primary brain tumors. Acta Oncol. 58(5):745–752.
  • Hartlerode AJ, Scully R. 2009. Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J. 423(2):157–168.
  • Hladik D, Tapio S. 2016. Effects of ionizing radiation on the mammalian brain. Mutat Res Rev Mutat Res. 770(Pt B):219–230.
  • Jackson SP, Bartek J. 2009. The DNA-damage response in human biology and disease. Nature. 461(7267):1071–1078.
  • Jakob B, Splinter J, Durante M, Taucher-Scholz G. 2009. Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc Natl Acad Sci USA. 106(9):3172–3177.
  • Jezkova L, Zadneprianetc M, Kulikova E, Smirnova E, Bulanova T, Depes D, Falkova I, Boreyko A, Krasavin E, Davidkova M, et al. 2018. Particles with similar LET values generate DNA breaks of different complexity and reparability: a high-resolution microscopy analysis of γH2AX/53BP1 foci [10.1039/C7NR06829H. Nanoscale. 10(3):1162–1179.
  • Jones B. 2020. Clinical radiobiology of fast neutron therapy: what was learnt? Front Oncol. 10:1537.
  • Kiyozuka M, Akimoto T, Fukutome M, Motegi A, Mitsuhashi N. 2013. Radiation-induced dimer formation of EGFR: implications for the radiosensitizing effect of cetuximab. Anticancer Res. 33(10):4337–4346.
  • Krasieva TB, Giedzinski E, Tran K, Lan M, Limoli CL, Tromberg BJ. 2011. Probing the impact of gamma-irradiation on the metabolic state of neural stem and precursor cells using dual-wavelength intrinsic signal two-photon excited fluorescence. J Innov Opt Health Sci. 4(3):289–300.
  • Lee H-C, An S, Lee H, Woo S-H, Jin H-O, Seo S-K, Choe T-B, Yoo D-H, Lee S-J, Hong Y-J, et al. 2008. Activation of epidermal growth factor receptor and its downstream signaling pathway by nitric oxide in response to ionizing radiation. Mol Cancer Res. 6(6):996–1002.
  • Liang X, Ho So Y, Cui J, Ma K, Xu X, Zhao Y, Cai L, Li W. 2011. The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells. J Radiat Res. 52(3):380–386.
  • Lorat Y, Timm S, Jakob B, Taucher-Scholz G, Rübe CE. 2016. Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiation. Radiother Oncol. 121(1):154–161.
  • Louis SA, Rietze RL, Deleyrolle L, Wagey RE, Thomas TE, Eaves AC, Reynolds BA. 2008. Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells. 26(4):988–996.
  • Merchant TE, Conklin HM, Wu S, Lustig RH, Xiong X. 2009. Late effects of conformal radiation therapy for pediatric patients with low-grade glioma: prospective evaluation of cognitive, endocrine, and hearing deficits. J Clin Oncol. 27(22):3691–3697.
  • Mich JK, Signer RA, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. 2014. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. Elife. 3:e02669.
  • Mineyeva OA, Barykina NV, Bezriadnov DV, Latushkin ST, Ryazanov AI, Unezhev VN, Shuvaev SA, Usova SV, Lazutkin AA. 2019. Suppressed neurogenesis without cognitive deficits: effects of fast neutron irradiation in mice. Neuroreport. 30(8):538–543.
  • Ming G, Song H. 2011. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 70(4):687–702.
  • Nakajima NI, Brunton H, Watanabe R, Shrikhande A, Hirayama R, Matsufuji N, Fujimori A, Murakami T, Okayasu R, Jeggo P, et al. 2013. Visualisation of γH2AX foci caused by heavy ion particle traversal; distinction between core track versus non-track damage. PLOS One. 8(8):e70107.
  • Narayanan G, Yu YH, Tham M, Gan HT, Ramasamy S, Sankaran S, Hariharan S, Ahmed S. 2016. Enumeration of neural stem cells using clonal assays. J Vis Exp. (116):e54456. DOI: 10.3791/54456.
  • Nickoloff JA, Sharma N, Taylor L. 2020. Clustered DNA double-strand breaks: biological effects and relevance to cancer radiotherapy. Genes. 11(1):99.
  • Nikitaki Z, Nikolov V, Mavragani IV, Mladenov E, Mangelis A, Laskaratou DA, Fragkoulis GI, Hellweg CE, Martin OA, Emfietzoglou D, et al. 2016. Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET). Free Radic Res. 50(sup1):S64–S78.
  • Pacey L, Stead S, Gleave J, Tomczyk K, Doering L. 2006. Neural stem cell culture: neurosphere generation, microscopical analysis and cryopreservation. Protoc Exchange. DOI:10.1038/nprot.2006.215.
  • Pazzaglia S, Briganti G, Mancuso M, Saran A. 2020. Neurocognitive decline following radiotherapy: mechanisms and therapeutic implications. Cancers. 12(1):146.
  • Perez RL, Best G, Nicolay NH, Greubel C, Rossberger S, Reindl J, Dollinger G, Weber K-J, Cremer C, Huber PE. 2016. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci. FASEB J. 30(8):2767–2776.
  • Polo SE, Jackson SP. 2011. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 25(5):409–433.
  • Posypanova GA, Ratushnyak MG, Semochkina YP, Abisheva AA, Moskaleva EY. 2019. The sensitivity of the cultured murine neural stem cells to the ionizing radiation. Tsitologiya. 61(10):806–816.
  • Reynolds BA, Weiss S. 1992. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 255(5052):1707–1710.
  • Rockhill JK, Laramore GE. 2016. Chapter 20 – neutron radiotherapy. In: Gunderson LL, Tepper JE, editors. Clinical radiation oncology. 4th ed. Philadelphia (PA): Elsevier; p. 373–380.e372.
  • Rogakou EP, Boon C, Redon C, Bonner WM. 1999. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 146(5):905–916.
  • Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM. 2000. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem. 275(13):9390–9395.
  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 273(10):5858–5868.
  • Saad S, Wang TJ. 2015. Neurocognitive deficits after radiation therapy for brain malignancies. Am J Clin Oncol. 38(6):634–640.
  • Saha S, Woodbine L, Haines J, Coster M, Ricket N, Barazzuol L, Ainsbury E, Sienkiewicz Z, Jeggo P. 2014. Increased apoptosis and DNA double-strand breaks in the embryonic mouse brain in response to very low-dose X-rays but not 50 Hz magnetic fields. J R Soc Interface. 11(100):20140783.
  • Scherthan H, Lee JH, Maus E, Schumann S, Muhtadi R, Chojowski R, Port M, Lassmann M, Bestvater F, Hausmann M. 2019. Nanostructure of clustered DNA damage in leukocytes after in-solution irradiation with the alpha emitter Ra-223. Cancers. 11(12):1877.
  • Schmitt E, Paquet C, Beauchemin M, Bertrand R. 2007. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B. 8(6):377–397.
  • Schröder A, Kriesen S, Hildebrandt G, Manda K. 2019. First insights into the effect of low-dose X-ray irradiation in adipose-derived stem cells. Int J Mol Sci. 20(23). DOI:10.3390/ijms20236075.
  • Scott SP, Pandita TK. 2006. The cellular control of DNA double-strand breaks. J Cell Biochem. 99(6):1463–1475.
  • Shen T, Huang S. 2012. The role of Cdc25A in the regulation of cell proliferation and apoptosis. Anticancer Agents Med Chem. 12(6):631–639.
  • Stucki M, Jackson SP. 2006. gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair. 5(5):534–543.
  • Sturla LM, Amorino G, Alexander MS, Mikkelsen RB, Valerie K, Schmidt-Ullrichr RK. 2005. Requirement of Tyr-992 and Tyr-1173 in phosphorylation of the epidermal growth factor receptor by ionizing radiation and modulation by SHP2. J Biol Chem. 280(15):14597–14604.
  • Tamaishi N, Tsukimoto M, Kitami A, Kojima S. 2011. P2Y6 receptors and ADAM17 mediate low-dose gamma-ray-induced focus formation (activation) of EGF receptor. Radiat Res. 175(2):193–200.
  • Tseng BP, Giedzinski E, Izadi A, Suarez T, Lan ML, Tran KK, Acharya MM, Nelson GA, Raber J, Parihar VK, et al. 2014. Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation. Antioxid Redox Signaling. 20(9):1410–1422.
  • Urushibara A, Shikazono N, O'Neill P, Fujii K, Wada S, Yokoya A. 2008. LET dependence of the yield of single-, double-strand breaks and base lesions in fully hydrated plasmid DNA films by 4He(2+) ion irradiation. Int J Radiat Biol. 84(1):23–33.
  • Vítor AC, Huertas P, Legube G, de Almeida SF. 2020. Studying DNA double-strand break repair: an ever-growing toolbox. Front Mol Biosci. 7:24.
  • Xu Y, Shao Y, Voorhees JJ, Fisher GJ. 2006. Oxidative inhibition of receptor-type protein-tyrosine phosphatase kappa by ultraviolet irradiation activates epidermal growth factor receptor in human keratinocytes. J Biol Chem. 281(37):27389–27397.
  • Yang L, Liu Z, Chen C, Cong X, Li Z, Zhao S, Ren M. 2017. Low-dose radiation modulates human mesenchymal stem cell proliferation through regulating CDK and Rb. Am J Transl Res. 9(4):1914–1921.
  • Yang M, Kim H, Kim J, Kim SH, Kim JC, Bae CS, Kim JS, Shin T, Moon C. 2012. Fast neutron irradiation deteriorates hippocampus-related memory ability in adult mice. J Vet Sci. 13(1):1–6.
  • Yang M, Kim JS, Son Y, Kim J, Kim JY, Kim SH, Kim JC, Shin T, Moon C. 2011. Detrimental effect of fast neutrons on cultured immature rat hippocampal cells: relative biological effectiveness of in vitro cell death indices. Radiat Res. 176(3):303–310.
  • Yang M, Kim JS, Song MS, Kim JC, Shin T, Lee SS, Kim SH, Moon C. 2010. Dose-response and relative biological effectiveness of fast neutrons: induction of apoptosis and inhibition of neurogenesis in the hippocampus of adult mice. Int J Radiat Biol. 86(6):476–485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.